A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction
Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning mo...
Ausführliche Beschreibung
Autor*in: |
Mohammad Ehteram [verfasserIn] Fatemeh Barzegari Banadkooki [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Water - MDPI AG, 2010, 15(2023), 22, p 3940 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:22, p 3940 |
Links: |
---|
DOI / URN: |
10.3390/w15223940 |
---|
Katalog-ID: |
DOAJ101177682 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101177682 | ||
003 | DE-627 | ||
005 | 20240414151237.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/w15223940 |2 doi | |
035 | |a (DE-627)DOAJ101177682 | ||
035 | |a (DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TC1-978 | |
050 | 0 | |a TD201-500 | |
100 | 0 | |a Mohammad Ehteram |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. | ||
650 | 4 | |a deep learning models | |
650 | 4 | |a feature selection models | |
650 | 4 | |a groundwater level | |
650 | 4 | |a hybrid models | |
653 | 0 | |a Hydraulic engineering | |
653 | 0 | |a Water supply for domestic and industrial purposes | |
700 | 0 | |a Fatemeh Barzegari Banadkooki |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Water |d MDPI AG, 2010 |g 15(2023), 22, p 3940 |w (DE-627)611729008 |w (DE-600)2521238-2 |x 20734441 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:22, p 3940 |
856 | 4 | 0 | |u https://doi.org/10.3390/w15223940 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4441/15/22/3940 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4441 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 22, p 3940 |
author_variant |
m e me f b b fbb |
---|---|
matchkey_str |
article:20734441:2023----::dvlpdutpeierersinlmdlomnhyru |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TC |
publishDate |
2023 |
allfields |
10.3390/w15223940 doi (DE-627)DOAJ101177682 (DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Mohammad Ehteram verfasserin aut A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. deep learning models feature selection models groundwater level hybrid models Hydraulic engineering Water supply for domestic and industrial purposes Fatemeh Barzegari Banadkooki verfasserin aut In Water MDPI AG, 2010 15(2023), 22, p 3940 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:15 year:2023 number:22, p 3940 https://doi.org/10.3390/w15223940 kostenfrei https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3 kostenfrei https://www.mdpi.com/2073-4441/15/22/3940 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 3940 |
spelling |
10.3390/w15223940 doi (DE-627)DOAJ101177682 (DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Mohammad Ehteram verfasserin aut A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. deep learning models feature selection models groundwater level hybrid models Hydraulic engineering Water supply for domestic and industrial purposes Fatemeh Barzegari Banadkooki verfasserin aut In Water MDPI AG, 2010 15(2023), 22, p 3940 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:15 year:2023 number:22, p 3940 https://doi.org/10.3390/w15223940 kostenfrei https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3 kostenfrei https://www.mdpi.com/2073-4441/15/22/3940 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 3940 |
allfields_unstemmed |
10.3390/w15223940 doi (DE-627)DOAJ101177682 (DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Mohammad Ehteram verfasserin aut A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. deep learning models feature selection models groundwater level hybrid models Hydraulic engineering Water supply for domestic and industrial purposes Fatemeh Barzegari Banadkooki verfasserin aut In Water MDPI AG, 2010 15(2023), 22, p 3940 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:15 year:2023 number:22, p 3940 https://doi.org/10.3390/w15223940 kostenfrei https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3 kostenfrei https://www.mdpi.com/2073-4441/15/22/3940 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 3940 |
allfieldsGer |
10.3390/w15223940 doi (DE-627)DOAJ101177682 (DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Mohammad Ehteram verfasserin aut A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. deep learning models feature selection models groundwater level hybrid models Hydraulic engineering Water supply for domestic and industrial purposes Fatemeh Barzegari Banadkooki verfasserin aut In Water MDPI AG, 2010 15(2023), 22, p 3940 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:15 year:2023 number:22, p 3940 https://doi.org/10.3390/w15223940 kostenfrei https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3 kostenfrei https://www.mdpi.com/2073-4441/15/22/3940 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 3940 |
allfieldsSound |
10.3390/w15223940 doi (DE-627)DOAJ101177682 (DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Mohammad Ehteram verfasserin aut A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. deep learning models feature selection models groundwater level hybrid models Hydraulic engineering Water supply for domestic and industrial purposes Fatemeh Barzegari Banadkooki verfasserin aut In Water MDPI AG, 2010 15(2023), 22, p 3940 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:15 year:2023 number:22, p 3940 https://doi.org/10.3390/w15223940 kostenfrei https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3 kostenfrei https://www.mdpi.com/2073-4441/15/22/3940 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 3940 |
language |
English |
source |
In Water 15(2023), 22, p 3940 volume:15 year:2023 number:22, p 3940 |
sourceStr |
In Water 15(2023), 22, p 3940 volume:15 year:2023 number:22, p 3940 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
deep learning models feature selection models groundwater level hybrid models Hydraulic engineering Water supply for domestic and industrial purposes |
isfreeaccess_bool |
true |
container_title |
Water |
authorswithroles_txt_mv |
Mohammad Ehteram @@aut@@ Fatemeh Barzegari Banadkooki @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
611729008 |
id |
DOAJ101177682 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101177682</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151237.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w15223940</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101177682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohammad Ehteram</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature selection models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groundwater level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fatemeh Barzegari Banadkooki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">15(2023), 22, p 3940</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22, p 3940</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w15223940</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/15/22/3940</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">22, p 3940</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mohammad Ehteram |
spellingShingle |
Mohammad Ehteram misc TC1-978 misc TD201-500 misc deep learning models misc feature selection models misc groundwater level misc hybrid models misc Hydraulic engineering misc Water supply for domestic and industrial purposes A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction |
authorStr |
Mohammad Ehteram |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)611729008 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TC1-978 |
illustrated |
Not Illustrated |
issn |
20734441 |
topic_title |
TC1-978 TD201-500 A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction deep learning models feature selection models groundwater level hybrid models |
topic |
misc TC1-978 misc TD201-500 misc deep learning models misc feature selection models misc groundwater level misc hybrid models misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_unstemmed |
misc TC1-978 misc TD201-500 misc deep learning models misc feature selection models misc groundwater level misc hybrid models misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_browse |
misc TC1-978 misc TD201-500 misc deep learning models misc feature selection models misc groundwater level misc hybrid models misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water |
hierarchy_parent_id |
611729008 |
hierarchy_top_title |
Water |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)611729008 (DE-600)2521238-2 |
title |
A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction |
ctrlnum |
(DE-627)DOAJ101177682 (DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3 |
title_full |
A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction |
author_sort |
Mohammad Ehteram |
journal |
Water |
journalStr |
Water |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Mohammad Ehteram Fatemeh Barzegari Banadkooki |
container_volume |
15 |
class |
TC1-978 TD201-500 |
format_se |
Elektronische Aufsätze |
author-letter |
Mohammad Ehteram |
doi_str_mv |
10.3390/w15223940 |
author2-role |
verfasserin |
title_sort |
developed multiple linear regression (mlr) model for monthly groundwater level prediction |
callnumber |
TC1-978 |
title_auth |
A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction |
abstract |
Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. |
abstractGer |
Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. |
abstract_unstemmed |
Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
22, p 3940 |
title_short |
A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction |
url |
https://doi.org/10.3390/w15223940 https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3 https://www.mdpi.com/2073-4441/15/22/3940 https://doaj.org/toc/2073-4441 |
remote_bool |
true |
author2 |
Fatemeh Barzegari Banadkooki |
author2Str |
Fatemeh Barzegari Banadkooki |
ppnlink |
611729008 |
callnumber-subject |
TC - Hydraulic and Ocean Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/w15223940 |
callnumber-a |
TC1-978 |
up_date |
2024-07-03T19:05:29.871Z |
_version_ |
1803585878622208000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101177682</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151237.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w15223940</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101177682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ72416d16b6524b9da65c5b0a368022d3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohammad Ehteram</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Developed Multiple Linear Regression (MLR) Model for Monthly Groundwater Level Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Groundwater level (GLW) prediction is essential for monitoring water resources. Our study introduces a novel model called convolutional neural network (CNN)–long short-term memory neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We combine two deep learning models with the MLR model to predict GWL and overcome the limitations of the MLR model. The current paper has several innovations. Our study develops an advanced hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature selection method for selecting optimal input scenarios. Finally, an advanced method is developed to examine the impact of inputs and model parameters on output uncertainty. The current paper introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model (LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty (PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM, and MLR models, and extract spatial and temporal features. Based on the study’s findings, the combination of linear models and deep learning models can improve the performance of linear models in predicting outcomes. The GOA method can also contribute to feature selection and input selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the CLM model as a reliable model for predicting GWLs in different basins.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature selection models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groundwater level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fatemeh Barzegari Banadkooki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">15(2023), 22, p 3940</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22, p 3940</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w15223940</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/72416d16b6524b9da65c5b0a368022d3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/15/22/3940</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">22, p 3940</subfield></datafield></record></collection>
|
score |
7.4016542 |