PointNAC: Copula-Based Point Cloud Semantic Segmentation Network
Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structura...
Ausführliche Beschreibung
Autor*in: |
Chunyuan Deng [verfasserIn] Ruixing Chen [verfasserIn] Wuyang Tang [verfasserIn] Hexuan Chu [verfasserIn] Gang Xu [verfasserIn] Yue Cui [verfasserIn] Zhenyun Peng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Symmetry - MDPI AG, 2009, 15(2023), 11, p 2021 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:11, p 2021 |
Links: |
---|
DOI / URN: |
10.3390/sym15112021 |
---|
Katalog-ID: |
DOAJ101183933 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101183933 | ||
003 | DE-627 | ||
005 | 20240414151359.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/sym15112021 |2 doi | |
035 | |a (DE-627)DOAJ101183933 | ||
035 | |a (DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Chunyuan Deng |e verfasserin |4 aut | |
245 | 1 | 0 | |a PointNAC: Copula-Based Point Cloud Semantic Segmentation Network |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. | ||
650 | 4 | |a S3DIS | |
650 | 4 | |a copula model | |
650 | 4 | |a self-attention model | |
650 | 4 | |a local features | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Ruixing Chen |e verfasserin |4 aut | |
700 | 0 | |a Wuyang Tang |e verfasserin |4 aut | |
700 | 0 | |a Hexuan Chu |e verfasserin |4 aut | |
700 | 0 | |a Gang Xu |e verfasserin |4 aut | |
700 | 0 | |a Yue Cui |e verfasserin |4 aut | |
700 | 0 | |a Zhenyun Peng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Symmetry |d MDPI AG, 2009 |g 15(2023), 11, p 2021 |w (DE-627)610604112 |w (DE-600)2518382-5 |x 20738994 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:11, p 2021 |
856 | 4 | 0 | |u https://doi.org/10.3390/sym15112021 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-8994/15/11/2021 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-8994 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 11, p 2021 |
author_variant |
c d cd r c rc w t wt h c hc g x gx y c yc z p zp |
---|---|
matchkey_str |
article:20738994:2023----::onncouaaepitlusmnisge |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.3390/sym15112021 doi (DE-627)DOAJ101183933 (DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a DE-627 ger DE-627 rakwb eng QA1-939 Chunyuan Deng verfasserin aut PointNAC: Copula-Based Point Cloud Semantic Segmentation Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. S3DIS copula model self-attention model local features Mathematics Ruixing Chen verfasserin aut Wuyang Tang verfasserin aut Hexuan Chu verfasserin aut Gang Xu verfasserin aut Yue Cui verfasserin aut Zhenyun Peng verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 11, p 2021 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:11, p 2021 https://doi.org/10.3390/sym15112021 kostenfrei https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a kostenfrei https://www.mdpi.com/2073-8994/15/11/2021 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 11, p 2021 |
spelling |
10.3390/sym15112021 doi (DE-627)DOAJ101183933 (DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a DE-627 ger DE-627 rakwb eng QA1-939 Chunyuan Deng verfasserin aut PointNAC: Copula-Based Point Cloud Semantic Segmentation Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. S3DIS copula model self-attention model local features Mathematics Ruixing Chen verfasserin aut Wuyang Tang verfasserin aut Hexuan Chu verfasserin aut Gang Xu verfasserin aut Yue Cui verfasserin aut Zhenyun Peng verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 11, p 2021 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:11, p 2021 https://doi.org/10.3390/sym15112021 kostenfrei https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a kostenfrei https://www.mdpi.com/2073-8994/15/11/2021 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 11, p 2021 |
allfields_unstemmed |
10.3390/sym15112021 doi (DE-627)DOAJ101183933 (DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a DE-627 ger DE-627 rakwb eng QA1-939 Chunyuan Deng verfasserin aut PointNAC: Copula-Based Point Cloud Semantic Segmentation Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. S3DIS copula model self-attention model local features Mathematics Ruixing Chen verfasserin aut Wuyang Tang verfasserin aut Hexuan Chu verfasserin aut Gang Xu verfasserin aut Yue Cui verfasserin aut Zhenyun Peng verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 11, p 2021 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:11, p 2021 https://doi.org/10.3390/sym15112021 kostenfrei https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a kostenfrei https://www.mdpi.com/2073-8994/15/11/2021 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 11, p 2021 |
allfieldsGer |
10.3390/sym15112021 doi (DE-627)DOAJ101183933 (DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a DE-627 ger DE-627 rakwb eng QA1-939 Chunyuan Deng verfasserin aut PointNAC: Copula-Based Point Cloud Semantic Segmentation Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. S3DIS copula model self-attention model local features Mathematics Ruixing Chen verfasserin aut Wuyang Tang verfasserin aut Hexuan Chu verfasserin aut Gang Xu verfasserin aut Yue Cui verfasserin aut Zhenyun Peng verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 11, p 2021 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:11, p 2021 https://doi.org/10.3390/sym15112021 kostenfrei https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a kostenfrei https://www.mdpi.com/2073-8994/15/11/2021 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 11, p 2021 |
allfieldsSound |
10.3390/sym15112021 doi (DE-627)DOAJ101183933 (DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a DE-627 ger DE-627 rakwb eng QA1-939 Chunyuan Deng verfasserin aut PointNAC: Copula-Based Point Cloud Semantic Segmentation Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. S3DIS copula model self-attention model local features Mathematics Ruixing Chen verfasserin aut Wuyang Tang verfasserin aut Hexuan Chu verfasserin aut Gang Xu verfasserin aut Yue Cui verfasserin aut Zhenyun Peng verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 11, p 2021 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:11, p 2021 https://doi.org/10.3390/sym15112021 kostenfrei https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a kostenfrei https://www.mdpi.com/2073-8994/15/11/2021 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 11, p 2021 |
language |
English |
source |
In Symmetry 15(2023), 11, p 2021 volume:15 year:2023 number:11, p 2021 |
sourceStr |
In Symmetry 15(2023), 11, p 2021 volume:15 year:2023 number:11, p 2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
S3DIS copula model self-attention model local features Mathematics |
isfreeaccess_bool |
true |
container_title |
Symmetry |
authorswithroles_txt_mv |
Chunyuan Deng @@aut@@ Ruixing Chen @@aut@@ Wuyang Tang @@aut@@ Hexuan Chu @@aut@@ Gang Xu @@aut@@ Yue Cui @@aut@@ Zhenyun Peng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
610604112 |
id |
DOAJ101183933 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101183933</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151359.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/sym15112021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101183933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chunyuan Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PointNAC: Copula-Based Point Cloud Semantic Segmentation Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S3DIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">copula model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-attention model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local features</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruixing Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wuyang Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hexuan Chu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyun Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Symmetry</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 11, p 2021</subfield><subfield code="w">(DE-627)610604112</subfield><subfield code="w">(DE-600)2518382-5</subfield><subfield code="x">20738994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p 2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/sym15112021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-8994/15/11/2021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-8994</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">11, p 2021</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chunyuan Deng |
spellingShingle |
Chunyuan Deng misc QA1-939 misc S3DIS misc copula model misc self-attention model misc local features misc Mathematics PointNAC: Copula-Based Point Cloud Semantic Segmentation Network |
authorStr |
Chunyuan Deng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604112 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
20738994 |
topic_title |
QA1-939 PointNAC: Copula-Based Point Cloud Semantic Segmentation Network S3DIS copula model self-attention model local features |
topic |
misc QA1-939 misc S3DIS misc copula model misc self-attention model misc local features misc Mathematics |
topic_unstemmed |
misc QA1-939 misc S3DIS misc copula model misc self-attention model misc local features misc Mathematics |
topic_browse |
misc QA1-939 misc S3DIS misc copula model misc self-attention model misc local features misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Symmetry |
hierarchy_parent_id |
610604112 |
hierarchy_top_title |
Symmetry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604112 (DE-600)2518382-5 |
title |
PointNAC: Copula-Based Point Cloud Semantic Segmentation Network |
ctrlnum |
(DE-627)DOAJ101183933 (DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a |
title_full |
PointNAC: Copula-Based Point Cloud Semantic Segmentation Network |
author_sort |
Chunyuan Deng |
journal |
Symmetry |
journalStr |
Symmetry |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Chunyuan Deng Ruixing Chen Wuyang Tang Hexuan Chu Gang Xu Yue Cui Zhenyun Peng |
container_volume |
15 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Chunyuan Deng |
doi_str_mv |
10.3390/sym15112021 |
author2-role |
verfasserin |
title_sort |
pointnac: copula-based point cloud semantic segmentation network |
callnumber |
QA1-939 |
title_auth |
PointNAC: Copula-Based Point Cloud Semantic Segmentation Network |
abstract |
Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. |
abstractGer |
Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. |
abstract_unstemmed |
Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 2021 |
title_short |
PointNAC: Copula-Based Point Cloud Semantic Segmentation Network |
url |
https://doi.org/10.3390/sym15112021 https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a https://www.mdpi.com/2073-8994/15/11/2021 https://doaj.org/toc/2073-8994 |
remote_bool |
true |
author2 |
Ruixing Chen Wuyang Tang Hexuan Chu Gang Xu Yue Cui Zhenyun Peng |
author2Str |
Ruixing Chen Wuyang Tang Hexuan Chu Gang Xu Yue Cui Zhenyun Peng |
ppnlink |
610604112 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/sym15112021 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T19:08:00.435Z |
_version_ |
1803586036496859136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101183933</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151359.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/sym15112021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101183933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9f46d274a1684fd58969c7ab784ea20a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chunyuan Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PointNAC: Copula-Based Point Cloud Semantic Segmentation Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S3DIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">copula model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-attention model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local features</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruixing Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wuyang Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hexuan Chu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyun Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Symmetry</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 11, p 2021</subfield><subfield code="w">(DE-627)610604112</subfield><subfield code="w">(DE-600)2518382-5</subfield><subfield code="x">20738994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p 2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/sym15112021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9f46d274a1684fd58969c7ab784ea20a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-8994/15/11/2021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-8994</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">11, p 2021</subfield></datafield></record></collection>
|
score |
7.4018974 |