Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots
The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke pro...
Ausführliche Beschreibung
Autor*in: |
Yiming Zhang [verfasserIn] Jiahui Zhang [verfasserIn] Junliang Yin [verfasserIn] Yiqing Liu [verfasserIn] Xiaodong Cai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 12(2023), 22, p 3789 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:22, p 3789 |
Links: |
---|
DOI / URN: |
10.3390/plants12223789 |
---|
Katalog-ID: |
DOAJ101198957 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101198957 | ||
003 | DE-627 | ||
005 | 20240414151712.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants12223789 |2 doi | |
035 | |a (DE-627)DOAJ101198957 | ||
035 | |a (DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Yiming Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. | ||
650 | 4 | |a atypical shoots | |
650 | 4 | |a endogenous auxin | |
650 | 4 | |a genetic stability analysis | |
650 | 4 | |a <i<Helianthus tuberosus</i< | |
650 | 4 | |a plant tissue culture | |
653 | 0 | |a Botany | |
700 | 0 | |a Jiahui Zhang |e verfasserin |4 aut | |
700 | 0 | |a Junliang Yin |e verfasserin |4 aut | |
700 | 0 | |a Yiqing Liu |e verfasserin |4 aut | |
700 | 0 | |a Xiaodong Cai |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 12(2023), 22, p 3789 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:22, p 3789 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants12223789 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/12/22/3789 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 22, p 3789 |
author_variant |
y z yz j z jz j y jy y l yl x c xc |
---|---|
matchkey_str |
article:22237747:2023----::lnrgnrtovaraoeeiijrslmrihksncmaaienlssfnoeosomnsnato |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QK |
publishDate |
2023 |
allfields |
10.3390/plants12223789 doi (DE-627)DOAJ101198957 (DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b DE-627 ger DE-627 rakwb eng QK1-989 Yiming Zhang verfasserin aut Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. atypical shoots endogenous auxin genetic stability analysis <i<Helianthus tuberosus</i< plant tissue culture Botany Jiahui Zhang verfasserin aut Junliang Yin verfasserin aut Yiqing Liu verfasserin aut Xiaodong Cai verfasserin aut In Plants MDPI AG, 2013 12(2023), 22, p 3789 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:22, p 3789 https://doi.org/10.3390/plants12223789 kostenfrei https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b kostenfrei https://www.mdpi.com/2223-7747/12/22/3789 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22, p 3789 |
spelling |
10.3390/plants12223789 doi (DE-627)DOAJ101198957 (DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b DE-627 ger DE-627 rakwb eng QK1-989 Yiming Zhang verfasserin aut Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. atypical shoots endogenous auxin genetic stability analysis <i<Helianthus tuberosus</i< plant tissue culture Botany Jiahui Zhang verfasserin aut Junliang Yin verfasserin aut Yiqing Liu verfasserin aut Xiaodong Cai verfasserin aut In Plants MDPI AG, 2013 12(2023), 22, p 3789 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:22, p 3789 https://doi.org/10.3390/plants12223789 kostenfrei https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b kostenfrei https://www.mdpi.com/2223-7747/12/22/3789 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22, p 3789 |
allfields_unstemmed |
10.3390/plants12223789 doi (DE-627)DOAJ101198957 (DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b DE-627 ger DE-627 rakwb eng QK1-989 Yiming Zhang verfasserin aut Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. atypical shoots endogenous auxin genetic stability analysis <i<Helianthus tuberosus</i< plant tissue culture Botany Jiahui Zhang verfasserin aut Junliang Yin verfasserin aut Yiqing Liu verfasserin aut Xiaodong Cai verfasserin aut In Plants MDPI AG, 2013 12(2023), 22, p 3789 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:22, p 3789 https://doi.org/10.3390/plants12223789 kostenfrei https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b kostenfrei https://www.mdpi.com/2223-7747/12/22/3789 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22, p 3789 |
allfieldsGer |
10.3390/plants12223789 doi (DE-627)DOAJ101198957 (DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b DE-627 ger DE-627 rakwb eng QK1-989 Yiming Zhang verfasserin aut Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. atypical shoots endogenous auxin genetic stability analysis <i<Helianthus tuberosus</i< plant tissue culture Botany Jiahui Zhang verfasserin aut Junliang Yin verfasserin aut Yiqing Liu verfasserin aut Xiaodong Cai verfasserin aut In Plants MDPI AG, 2013 12(2023), 22, p 3789 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:22, p 3789 https://doi.org/10.3390/plants12223789 kostenfrei https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b kostenfrei https://www.mdpi.com/2223-7747/12/22/3789 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22, p 3789 |
allfieldsSound |
10.3390/plants12223789 doi (DE-627)DOAJ101198957 (DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b DE-627 ger DE-627 rakwb eng QK1-989 Yiming Zhang verfasserin aut Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. atypical shoots endogenous auxin genetic stability analysis <i<Helianthus tuberosus</i< plant tissue culture Botany Jiahui Zhang verfasserin aut Junliang Yin verfasserin aut Yiqing Liu verfasserin aut Xiaodong Cai verfasserin aut In Plants MDPI AG, 2013 12(2023), 22, p 3789 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:22, p 3789 https://doi.org/10.3390/plants12223789 kostenfrei https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b kostenfrei https://www.mdpi.com/2223-7747/12/22/3789 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22, p 3789 |
language |
English |
source |
In Plants 12(2023), 22, p 3789 volume:12 year:2023 number:22, p 3789 |
sourceStr |
In Plants 12(2023), 22, p 3789 volume:12 year:2023 number:22, p 3789 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
atypical shoots endogenous auxin genetic stability analysis <i<Helianthus tuberosus</i< plant tissue culture Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Yiming Zhang @@aut@@ Jiahui Zhang @@aut@@ Junliang Yin @@aut@@ Yiqing Liu @@aut@@ Xiaodong Cai @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ101198957 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101198957</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151712.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants12223789</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101198957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yiming Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atypical shoots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">endogenous auxin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Helianthus tuberosus</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant tissue culture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiahui Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junliang Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiqing Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaodong Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 22, p 3789</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22, p 3789</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants12223789</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/12/22/3789</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">22, p 3789</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yiming Zhang |
spellingShingle |
Yiming Zhang misc QK1-989 misc atypical shoots misc endogenous auxin misc genetic stability analysis misc <i<Helianthus tuberosus</i< misc plant tissue culture misc Botany Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots |
authorStr |
Yiming Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots atypical shoots endogenous auxin genetic stability analysis <i<Helianthus tuberosus</i< plant tissue culture |
topic |
misc QK1-989 misc atypical shoots misc endogenous auxin misc genetic stability analysis misc <i<Helianthus tuberosus</i< misc plant tissue culture misc Botany |
topic_unstemmed |
misc QK1-989 misc atypical shoots misc endogenous auxin misc genetic stability analysis misc <i<Helianthus tuberosus</i< misc plant tissue culture misc Botany |
topic_browse |
misc QK1-989 misc atypical shoots misc endogenous auxin misc genetic stability analysis misc <i<Helianthus tuberosus</i< misc plant tissue culture misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots |
ctrlnum |
(DE-627)DOAJ101198957 (DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b |
title_full |
Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots |
author_sort |
Yiming Zhang |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Yiming Zhang Jiahui Zhang Junliang Yin Yiqing Liu Xiaodong Cai |
container_volume |
12 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Yiming Zhang |
doi_str_mv |
10.3390/plants12223789 |
author2-role |
verfasserin |
title_sort |
plant regeneration via organogenesis in jerusalem artichokes and comparative analysis of endogenous hormones and antioxidant enzymes in typical and atypical shoots |
callnumber |
QK1-989 |
title_auth |
Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots |
abstract |
The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. |
abstractGer |
The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. |
abstract_unstemmed |
The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
22, p 3789 |
title_short |
Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots |
url |
https://doi.org/10.3390/plants12223789 https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b https://www.mdpi.com/2223-7747/12/22/3789 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Jiahui Zhang Junliang Yin Yiqing Liu Xiaodong Cai |
author2Str |
Jiahui Zhang Junliang Yin Yiqing Liu Xiaodong Cai |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants12223789 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T19:13:42.923Z |
_version_ |
1803586395657207808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101198957</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151712.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants12223789</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101198957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6c68ab7a45ab4754bb4418114938458b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yiming Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plant Regeneration via Organogenesis in Jerusalem Artichokes and Comparative Analysis of Endogenous Hormones and Antioxidant Enzymes in Typical and Atypical Shoots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Jerusalem artichoke (<i<Helianthus tuberosus</i<) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA<sub<3</sub<) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA<sub<3</sub< was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA<sub<3</sub<. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atypical shoots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">endogenous auxin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Helianthus tuberosus</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant tissue culture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiahui Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junliang Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiqing Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaodong Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 22, p 3789</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22, p 3789</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants12223789</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6c68ab7a45ab4754bb4418114938458b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/12/22/3789</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">22, p 3789</subfield></datafield></record></collection>
|
score |
7.402135 |