Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors
Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk fa...
Ausführliche Beschreibung
Autor*in: |
Maite Aguas-Ayesa [verfasserIn] Patricia Yárnoz-Esquiroz [verfasserIn] Laura Olazarán [verfasserIn] Carolina M. Perdomo [verfasserIn] Marta García-Goñi [verfasserIn] Patricia Andrada [verfasserIn] Javier Escalada [verfasserIn] Camilo Silva [verfasserIn] Ascensión Marcos [verfasserIn] Gema Frühbeck [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nutrients - MDPI AG, 2009, 15(2023), 22, p 4824 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:22, p 4824 |
Links: |
---|
DOI / URN: |
10.3390/nu15224824 |
---|
Katalog-ID: |
DOAJ101203934 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101203934 | ||
003 | DE-627 | ||
005 | 20240414151819.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nu15224824 |2 doi | |
035 | |a (DE-627)DOAJ101203934 | ||
035 | |a (DE-599)DOAJa3eecc99d51245eab15febf0b39fd586 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TX341-641 | |
100 | 0 | |a Maite Aguas-Ayesa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. | ||
650 | 4 | |a overweight | |
650 | 4 | |a obesity | |
650 | 4 | |a dietary pattern | |
650 | 4 | |a alcoholic beverages | |
650 | 4 | |a beer | |
650 | 4 | |a adiposity | |
653 | 0 | |a Nutrition. Foods and food supply | |
700 | 0 | |a Patricia Yárnoz-Esquiroz |e verfasserin |4 aut | |
700 | 0 | |a Laura Olazarán |e verfasserin |4 aut | |
700 | 0 | |a Carolina M. Perdomo |e verfasserin |4 aut | |
700 | 0 | |a Marta García-Goñi |e verfasserin |4 aut | |
700 | 0 | |a Patricia Andrada |e verfasserin |4 aut | |
700 | 0 | |a Javier Escalada |e verfasserin |4 aut | |
700 | 0 | |a Camilo Silva |e verfasserin |4 aut | |
700 | 0 | |a Ascensión Marcos |e verfasserin |4 aut | |
700 | 0 | |a Gema Frühbeck |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nutrients |d MDPI AG, 2009 |g 15(2023), 22, p 4824 |w (DE-627)610604155 |w (DE-600)2518386-2 |x 20726643 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:22, p 4824 |
856 | 4 | 0 | |u https://doi.org/10.3390/nu15224824 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-6643/15/22/4824 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-6643 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 22, p 4824 |
author_variant |
m a a maa p y e pye l o lo c m p cmp m g g mgg p a pa j e je c s cs a m am g f gf |
---|---|
matchkey_str |
article:20726643:2023----::vlainfitradloodiknpteniptetwtecsbdwihiapnschri |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TX |
publishDate |
2023 |
allfields |
10.3390/nu15224824 doi (DE-627)DOAJ101203934 (DE-599)DOAJa3eecc99d51245eab15febf0b39fd586 DE-627 ger DE-627 rakwb eng TX341-641 Maite Aguas-Ayesa verfasserin aut Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. overweight obesity dietary pattern alcoholic beverages beer adiposity Nutrition. Foods and food supply Patricia Yárnoz-Esquiroz verfasserin aut Laura Olazarán verfasserin aut Carolina M. Perdomo verfasserin aut Marta García-Goñi verfasserin aut Patricia Andrada verfasserin aut Javier Escalada verfasserin aut Camilo Silva verfasserin aut Ascensión Marcos verfasserin aut Gema Frühbeck verfasserin aut In Nutrients MDPI AG, 2009 15(2023), 22, p 4824 (DE-627)610604155 (DE-600)2518386-2 20726643 nnns volume:15 year:2023 number:22, p 4824 https://doi.org/10.3390/nu15224824 kostenfrei https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586 kostenfrei https://www.mdpi.com/2072-6643/15/22/4824 kostenfrei https://doaj.org/toc/2072-6643 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 4824 |
spelling |
10.3390/nu15224824 doi (DE-627)DOAJ101203934 (DE-599)DOAJa3eecc99d51245eab15febf0b39fd586 DE-627 ger DE-627 rakwb eng TX341-641 Maite Aguas-Ayesa verfasserin aut Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. overweight obesity dietary pattern alcoholic beverages beer adiposity Nutrition. Foods and food supply Patricia Yárnoz-Esquiroz verfasserin aut Laura Olazarán verfasserin aut Carolina M. Perdomo verfasserin aut Marta García-Goñi verfasserin aut Patricia Andrada verfasserin aut Javier Escalada verfasserin aut Camilo Silva verfasserin aut Ascensión Marcos verfasserin aut Gema Frühbeck verfasserin aut In Nutrients MDPI AG, 2009 15(2023), 22, p 4824 (DE-627)610604155 (DE-600)2518386-2 20726643 nnns volume:15 year:2023 number:22, p 4824 https://doi.org/10.3390/nu15224824 kostenfrei https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586 kostenfrei https://www.mdpi.com/2072-6643/15/22/4824 kostenfrei https://doaj.org/toc/2072-6643 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 4824 |
allfields_unstemmed |
10.3390/nu15224824 doi (DE-627)DOAJ101203934 (DE-599)DOAJa3eecc99d51245eab15febf0b39fd586 DE-627 ger DE-627 rakwb eng TX341-641 Maite Aguas-Ayesa verfasserin aut Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. overweight obesity dietary pattern alcoholic beverages beer adiposity Nutrition. Foods and food supply Patricia Yárnoz-Esquiroz verfasserin aut Laura Olazarán verfasserin aut Carolina M. Perdomo verfasserin aut Marta García-Goñi verfasserin aut Patricia Andrada verfasserin aut Javier Escalada verfasserin aut Camilo Silva verfasserin aut Ascensión Marcos verfasserin aut Gema Frühbeck verfasserin aut In Nutrients MDPI AG, 2009 15(2023), 22, p 4824 (DE-627)610604155 (DE-600)2518386-2 20726643 nnns volume:15 year:2023 number:22, p 4824 https://doi.org/10.3390/nu15224824 kostenfrei https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586 kostenfrei https://www.mdpi.com/2072-6643/15/22/4824 kostenfrei https://doaj.org/toc/2072-6643 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 4824 |
allfieldsGer |
10.3390/nu15224824 doi (DE-627)DOAJ101203934 (DE-599)DOAJa3eecc99d51245eab15febf0b39fd586 DE-627 ger DE-627 rakwb eng TX341-641 Maite Aguas-Ayesa verfasserin aut Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. overweight obesity dietary pattern alcoholic beverages beer adiposity Nutrition. Foods and food supply Patricia Yárnoz-Esquiroz verfasserin aut Laura Olazarán verfasserin aut Carolina M. Perdomo verfasserin aut Marta García-Goñi verfasserin aut Patricia Andrada verfasserin aut Javier Escalada verfasserin aut Camilo Silva verfasserin aut Ascensión Marcos verfasserin aut Gema Frühbeck verfasserin aut In Nutrients MDPI AG, 2009 15(2023), 22, p 4824 (DE-627)610604155 (DE-600)2518386-2 20726643 nnns volume:15 year:2023 number:22, p 4824 https://doi.org/10.3390/nu15224824 kostenfrei https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586 kostenfrei https://www.mdpi.com/2072-6643/15/22/4824 kostenfrei https://doaj.org/toc/2072-6643 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 4824 |
allfieldsSound |
10.3390/nu15224824 doi (DE-627)DOAJ101203934 (DE-599)DOAJa3eecc99d51245eab15febf0b39fd586 DE-627 ger DE-627 rakwb eng TX341-641 Maite Aguas-Ayesa verfasserin aut Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. overweight obesity dietary pattern alcoholic beverages beer adiposity Nutrition. Foods and food supply Patricia Yárnoz-Esquiroz verfasserin aut Laura Olazarán verfasserin aut Carolina M. Perdomo verfasserin aut Marta García-Goñi verfasserin aut Patricia Andrada verfasserin aut Javier Escalada verfasserin aut Camilo Silva verfasserin aut Ascensión Marcos verfasserin aut Gema Frühbeck verfasserin aut In Nutrients MDPI AG, 2009 15(2023), 22, p 4824 (DE-627)610604155 (DE-600)2518386-2 20726643 nnns volume:15 year:2023 number:22, p 4824 https://doi.org/10.3390/nu15224824 kostenfrei https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586 kostenfrei https://www.mdpi.com/2072-6643/15/22/4824 kostenfrei https://doaj.org/toc/2072-6643 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 22, p 4824 |
language |
English |
source |
In Nutrients 15(2023), 22, p 4824 volume:15 year:2023 number:22, p 4824 |
sourceStr |
In Nutrients 15(2023), 22, p 4824 volume:15 year:2023 number:22, p 4824 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
overweight obesity dietary pattern alcoholic beverages beer adiposity Nutrition. Foods and food supply |
isfreeaccess_bool |
true |
container_title |
Nutrients |
authorswithroles_txt_mv |
Maite Aguas-Ayesa @@aut@@ Patricia Yárnoz-Esquiroz @@aut@@ Laura Olazarán @@aut@@ Carolina M. Perdomo @@aut@@ Marta García-Goñi @@aut@@ Patricia Andrada @@aut@@ Javier Escalada @@aut@@ Camilo Silva @@aut@@ Ascensión Marcos @@aut@@ Gema Frühbeck @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
610604155 |
id |
DOAJ101203934 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101203934</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151819.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nu15224824</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101203934</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa3eecc99d51245eab15febf0b39fd586</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TX341-641</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Maite Aguas-Ayesa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">overweight</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obesity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dietary pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alcoholic beverages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">beer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adiposity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nutrition. Foods and food supply</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patricia Yárnoz-Esquiroz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Olazarán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carolina M. Perdomo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marta García-Goñi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patricia Andrada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Javier Escalada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Camilo Silva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ascensión Marcos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gema Frühbeck</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nutrients</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 22, p 4824</subfield><subfield code="w">(DE-627)610604155</subfield><subfield code="w">(DE-600)2518386-2</subfield><subfield code="x">20726643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22, p 4824</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nu15224824</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6643/15/22/4824</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6643</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">22, p 4824</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Maite Aguas-Ayesa |
spellingShingle |
Maite Aguas-Ayesa misc TX341-641 misc overweight misc obesity misc dietary pattern misc alcoholic beverages misc beer misc adiposity misc Nutrition. Foods and food supply Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors |
authorStr |
Maite Aguas-Ayesa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604155 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TX341-641 |
illustrated |
Not Illustrated |
issn |
20726643 |
topic_title |
TX341-641 Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors overweight obesity dietary pattern alcoholic beverages beer adiposity |
topic |
misc TX341-641 misc overweight misc obesity misc dietary pattern misc alcoholic beverages misc beer misc adiposity misc Nutrition. Foods and food supply |
topic_unstemmed |
misc TX341-641 misc overweight misc obesity misc dietary pattern misc alcoholic beverages misc beer misc adiposity misc Nutrition. Foods and food supply |
topic_browse |
misc TX341-641 misc overweight misc obesity misc dietary pattern misc alcoholic beverages misc beer misc adiposity misc Nutrition. Foods and food supply |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nutrients |
hierarchy_parent_id |
610604155 |
hierarchy_top_title |
Nutrients |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604155 (DE-600)2518386-2 |
title |
Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors |
ctrlnum |
(DE-627)DOAJ101203934 (DE-599)DOAJa3eecc99d51245eab15febf0b39fd586 |
title_full |
Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors |
author_sort |
Maite Aguas-Ayesa |
journal |
Nutrients |
journalStr |
Nutrients |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Maite Aguas-Ayesa Patricia Yárnoz-Esquiroz Laura Olazarán Carolina M. Perdomo Marta García-Goñi Patricia Andrada Javier Escalada Camilo Silva Ascensión Marcos Gema Frühbeck |
container_volume |
15 |
class |
TX341-641 |
format_se |
Elektronische Aufsätze |
author-letter |
Maite Aguas-Ayesa |
doi_str_mv |
10.3390/nu15224824 |
author2-role |
verfasserin |
title_sort |
evaluation of dietary and alcohol drinking patterns in patients with excess body weight in a spanish cohort: impact on cardiometabolic risk factors |
callnumber |
TX341-641 |
title_auth |
Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors |
abstract |
Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. |
abstractGer |
Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. |
abstract_unstemmed |
Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
22, p 4824 |
title_short |
Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors |
url |
https://doi.org/10.3390/nu15224824 https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586 https://www.mdpi.com/2072-6643/15/22/4824 https://doaj.org/toc/2072-6643 |
remote_bool |
true |
author2 |
Patricia Yárnoz-Esquiroz Laura Olazarán Carolina M. Perdomo Marta García-Goñi Patricia Andrada Javier Escalada Camilo Silva Ascensión Marcos Gema Frühbeck |
author2Str |
Patricia Yárnoz-Esquiroz Laura Olazarán Carolina M. Perdomo Marta García-Goñi Patricia Andrada Javier Escalada Camilo Silva Ascensión Marcos Gema Frühbeck |
ppnlink |
610604155 |
callnumber-subject |
TX - Home Economics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nu15224824 |
callnumber-a |
TX341-641 |
up_date |
2024-07-03T19:15:40.763Z |
_version_ |
1803586519229792256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101203934</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151819.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nu15224824</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101203934</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa3eecc99d51245eab15febf0b39fd586</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TX341-641</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Maite Aguas-Ayesa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (<i<p</i< < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (<−0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (<0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (<i<p</i< < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">overweight</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obesity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dietary pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alcoholic beverages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">beer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adiposity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nutrition. Foods and food supply</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patricia Yárnoz-Esquiroz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Olazarán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carolina M. Perdomo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marta García-Goñi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patricia Andrada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Javier Escalada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Camilo Silva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ascensión Marcos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gema Frühbeck</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nutrients</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 22, p 4824</subfield><subfield code="w">(DE-627)610604155</subfield><subfield code="w">(DE-600)2518386-2</subfield><subfield code="x">20726643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22, p 4824</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nu15224824</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a3eecc99d51245eab15febf0b39fd586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6643/15/22/4824</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6643</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">22, p 4824</subfield></datafield></record></collection>
|
score |
7.4027834 |