Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V
This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio...
Ausführliche Beschreibung
Autor*in: |
Luis M. Araque [verfasserIn] Roberto Fernández de Luis [verfasserIn] Arkaitz Fidalgo-Marijuan [verfasserIn] Antonia Infantes-Molina [verfasserIn] Enrique Rodríguez-Castellón [verfasserIn] Claudio J. Pérez [verfasserIn] Guillermo J. Copello [verfasserIn] Juan M. Lázaro-Martínez [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Gels - MDPI AG, 2015, 9(2023), 11, p 909 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2023 ; number:11, p 909 |
Links: |
---|
DOI / URN: |
10.3390/gels9110909 |
---|
Katalog-ID: |
DOAJ101242379 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101242379 | ||
003 | DE-627 | ||
005 | 20240414152641.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/gels9110909 |2 doi | |
035 | |a (DE-627)DOAJ101242379 | ||
035 | |a (DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
050 | 0 | |a QD146-197 | |
050 | 0 | |a QD1-65 | |
100 | 0 | |a Luis M. Araque |e verfasserin |4 aut | |
245 | 1 | 0 | |a Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. | ||
650 | 4 | |a hydrogels | |
650 | 4 | |a DUT-67 | |
650 | 4 | |a adsorption | |
650 | 4 | |a multifunctional composites | |
650 | 4 | |a emerging pollutants | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Chemistry | |
653 | 0 | |a Inorganic chemistry | |
653 | 0 | |a General. Including alchemy | |
700 | 0 | |a Roberto Fernández de Luis |e verfasserin |4 aut | |
700 | 0 | |a Arkaitz Fidalgo-Marijuan |e verfasserin |4 aut | |
700 | 0 | |a Antonia Infantes-Molina |e verfasserin |4 aut | |
700 | 0 | |a Enrique Rodríguez-Castellón |e verfasserin |4 aut | |
700 | 0 | |a Claudio J. Pérez |e verfasserin |4 aut | |
700 | 0 | |a Guillermo J. Copello |e verfasserin |4 aut | |
700 | 0 | |a Juan M. Lázaro-Martínez |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Gels |d MDPI AG, 2015 |g 9(2023), 11, p 909 |w (DE-627)820684147 |w (DE-600)2813982-3 |x 23102861 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2023 |g number:11, p 909 |
856 | 4 | 0 | |u https://doi.org/10.3390/gels9110909 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2310-2861/9/11/909 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2310-2861 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2023 |e 11, p 909 |
author_variant |
l m a lma r f d l rfdl a f m afm a i m aim e r c erc c j p cjp g j c gjc j m l m jmlm |
---|---|
matchkey_str |
article:23102861:2023----::ieroytyeemnbsdnmtlraifaeokdt7opsthdoessfiinsretfrhrmvl |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QD |
publishDate |
2023 |
allfields |
10.3390/gels9110909 doi (DE-627)DOAJ101242379 (DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Luis M. Araque verfasserin aut Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. hydrogels DUT-67 adsorption multifunctional composites emerging pollutants Science Q Chemistry Inorganic chemistry General. Including alchemy Roberto Fernández de Luis verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Antonia Infantes-Molina verfasserin aut Enrique Rodríguez-Castellón verfasserin aut Claudio J. Pérez verfasserin aut Guillermo J. Copello verfasserin aut Juan M. Lázaro-Martínez verfasserin aut In Gels MDPI AG, 2015 9(2023), 11, p 909 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:9 year:2023 number:11, p 909 https://doi.org/10.3390/gels9110909 kostenfrei https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3 kostenfrei https://www.mdpi.com/2310-2861/9/11/909 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 11, p 909 |
spelling |
10.3390/gels9110909 doi (DE-627)DOAJ101242379 (DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Luis M. Araque verfasserin aut Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. hydrogels DUT-67 adsorption multifunctional composites emerging pollutants Science Q Chemistry Inorganic chemistry General. Including alchemy Roberto Fernández de Luis verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Antonia Infantes-Molina verfasserin aut Enrique Rodríguez-Castellón verfasserin aut Claudio J. Pérez verfasserin aut Guillermo J. Copello verfasserin aut Juan M. Lázaro-Martínez verfasserin aut In Gels MDPI AG, 2015 9(2023), 11, p 909 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:9 year:2023 number:11, p 909 https://doi.org/10.3390/gels9110909 kostenfrei https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3 kostenfrei https://www.mdpi.com/2310-2861/9/11/909 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 11, p 909 |
allfields_unstemmed |
10.3390/gels9110909 doi (DE-627)DOAJ101242379 (DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Luis M. Araque verfasserin aut Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. hydrogels DUT-67 adsorption multifunctional composites emerging pollutants Science Q Chemistry Inorganic chemistry General. Including alchemy Roberto Fernández de Luis verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Antonia Infantes-Molina verfasserin aut Enrique Rodríguez-Castellón verfasserin aut Claudio J. Pérez verfasserin aut Guillermo J. Copello verfasserin aut Juan M. Lázaro-Martínez verfasserin aut In Gels MDPI AG, 2015 9(2023), 11, p 909 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:9 year:2023 number:11, p 909 https://doi.org/10.3390/gels9110909 kostenfrei https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3 kostenfrei https://www.mdpi.com/2310-2861/9/11/909 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 11, p 909 |
allfieldsGer |
10.3390/gels9110909 doi (DE-627)DOAJ101242379 (DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Luis M. Araque verfasserin aut Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. hydrogels DUT-67 adsorption multifunctional composites emerging pollutants Science Q Chemistry Inorganic chemistry General. Including alchemy Roberto Fernández de Luis verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Antonia Infantes-Molina verfasserin aut Enrique Rodríguez-Castellón verfasserin aut Claudio J. Pérez verfasserin aut Guillermo J. Copello verfasserin aut Juan M. Lázaro-Martínez verfasserin aut In Gels MDPI AG, 2015 9(2023), 11, p 909 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:9 year:2023 number:11, p 909 https://doi.org/10.3390/gels9110909 kostenfrei https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3 kostenfrei https://www.mdpi.com/2310-2861/9/11/909 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 11, p 909 |
allfieldsSound |
10.3390/gels9110909 doi (DE-627)DOAJ101242379 (DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Luis M. Araque verfasserin aut Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. hydrogels DUT-67 adsorption multifunctional composites emerging pollutants Science Q Chemistry Inorganic chemistry General. Including alchemy Roberto Fernández de Luis verfasserin aut Arkaitz Fidalgo-Marijuan verfasserin aut Antonia Infantes-Molina verfasserin aut Enrique Rodríguez-Castellón verfasserin aut Claudio J. Pérez verfasserin aut Guillermo J. Copello verfasserin aut Juan M. Lázaro-Martínez verfasserin aut In Gels MDPI AG, 2015 9(2023), 11, p 909 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:9 year:2023 number:11, p 909 https://doi.org/10.3390/gels9110909 kostenfrei https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3 kostenfrei https://www.mdpi.com/2310-2861/9/11/909 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 11, p 909 |
language |
English |
source |
In Gels 9(2023), 11, p 909 volume:9 year:2023 number:11, p 909 |
sourceStr |
In Gels 9(2023), 11, p 909 volume:9 year:2023 number:11, p 909 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hydrogels DUT-67 adsorption multifunctional composites emerging pollutants Science Q Chemistry Inorganic chemistry General. Including alchemy |
isfreeaccess_bool |
true |
container_title |
Gels |
authorswithroles_txt_mv |
Luis M. Araque @@aut@@ Roberto Fernández de Luis @@aut@@ Arkaitz Fidalgo-Marijuan @@aut@@ Antonia Infantes-Molina @@aut@@ Enrique Rodríguez-Castellón @@aut@@ Claudio J. Pérez @@aut@@ Guillermo J. Copello @@aut@@ Juan M. Lázaro-Martínez @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
820684147 |
id |
DOAJ101242379 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101242379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414152641.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/gels9110909</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101242379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD146-197</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luis M. Araque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DUT-67</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adsorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multifunctional composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emerging pollutants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including alchemy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Fernández de Luis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arkaitz Fidalgo-Marijuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonia Infantes-Molina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enrique Rodríguez-Castellón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudio J. Pérez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guillermo J. Copello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan M. Lázaro-Martínez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gels</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">9(2023), 11, p 909</subfield><subfield code="w">(DE-627)820684147</subfield><subfield code="w">(DE-600)2813982-3</subfield><subfield code="x">23102861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p 909</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/gels9110909</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2310-2861/9/11/909</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2310-2861</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="e">11, p 909</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Luis M. Araque |
spellingShingle |
Luis M. Araque misc QD1-999 misc QD146-197 misc QD1-65 misc hydrogels misc DUT-67 misc adsorption misc multifunctional composites misc emerging pollutants misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V |
authorStr |
Luis M. Araque |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684147 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
23102861 |
topic_title |
QD1-999 QD146-197 QD1-65 Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V hydrogels DUT-67 adsorption multifunctional composites emerging pollutants |
topic |
misc QD1-999 misc QD146-197 misc QD1-65 misc hydrogels misc DUT-67 misc adsorption misc multifunctional composites misc emerging pollutants misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
topic_unstemmed |
misc QD1-999 misc QD146-197 misc QD1-65 misc hydrogels misc DUT-67 misc adsorption misc multifunctional composites misc emerging pollutants misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
topic_browse |
misc QD1-999 misc QD146-197 misc QD1-65 misc hydrogels misc DUT-67 misc adsorption misc multifunctional composites misc emerging pollutants misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Gels |
hierarchy_parent_id |
820684147 |
hierarchy_top_title |
Gels |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684147 (DE-600)2813982-3 |
title |
Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V |
ctrlnum |
(DE-627)DOAJ101242379 (DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3 |
title_full |
Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V |
author_sort |
Luis M. Araque |
journal |
Gels |
journalStr |
Gels |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Luis M. Araque Roberto Fernández de Luis Arkaitz Fidalgo-Marijuan Antonia Infantes-Molina Enrique Rodríguez-Castellón Claudio J. Pérez Guillermo J. Copello Juan M. Lázaro-Martínez |
container_volume |
9 |
class |
QD1-999 QD146-197 QD1-65 |
format_se |
Elektronische Aufsätze |
author-letter |
Luis M. Araque |
doi_str_mv |
10.3390/gels9110909 |
author2-role |
verfasserin |
title_sort |
linear polyethyleneimine-based and metal organic frameworks (dut-67) composite hydrogels as efficient sorbents for the removal of methyl orange, copper ions, and penicillin v |
callnumber |
QD1-999 |
title_auth |
Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V |
abstract |
This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. |
abstractGer |
This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. |
abstract_unstemmed |
This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 909 |
title_short |
Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V |
url |
https://doi.org/10.3390/gels9110909 https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3 https://www.mdpi.com/2310-2861/9/11/909 https://doaj.org/toc/2310-2861 |
remote_bool |
true |
author2 |
Roberto Fernández de Luis Arkaitz Fidalgo-Marijuan Antonia Infantes-Molina Enrique Rodríguez-Castellón Claudio J. Pérez Guillermo J. Copello Juan M. Lázaro-Martínez |
author2Str |
Roberto Fernández de Luis Arkaitz Fidalgo-Marijuan Antonia Infantes-Molina Enrique Rodríguez-Castellón Claudio J. Pérez Guillermo J. Copello Juan M. Lázaro-Martínez |
ppnlink |
820684147 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/gels9110909 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T19:31:01.131Z |
_version_ |
1803587484266790912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101242379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414152641.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/gels9110909</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101242379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf1e12c8c70a848b5a1ca6fba02bc2be3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD146-197</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luis M. Araque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir’s model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L<sup<−1</sup<, 86 ± 6 mg L<sup<−1</sup<, and 127 ± 4 mg L<sup<−1</sup<, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DUT-67</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adsorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multifunctional composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emerging pollutants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including alchemy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Fernández de Luis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arkaitz Fidalgo-Marijuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonia Infantes-Molina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enrique Rodríguez-Castellón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudio J. Pérez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guillermo J. Copello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan M. Lázaro-Martínez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gels</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">9(2023), 11, p 909</subfield><subfield code="w">(DE-627)820684147</subfield><subfield code="w">(DE-600)2813982-3</subfield><subfield code="x">23102861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p 909</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/gels9110909</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f1e12c8c70a848b5a1ca6fba02bc2be3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2310-2861/9/11/909</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2310-2861</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="e">11, p 909</subfield></datafield></record></collection>
|
score |
7.401309 |