Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks
Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type...
Ausführliche Beschreibung
Autor*in: |
Jianjun Wu [verfasserIn] Yuxue Hu [verfasserIn] Zhongqiang Huang [verfasserIn] Junsong Li [verfasserIn] Xiang Li [verfasserIn] Ying Sha [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 13(2023), 22, p 12437 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:22, p 12437 |
Links: |
---|
DOI / URN: |
10.3390/app132212437 |
---|
Katalog-ID: |
DOAJ101278152 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101278152 | ||
003 | DE-627 | ||
005 | 20240414153414.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app132212437 |2 doi | |
035 | |a (DE-627)DOAJ101278152 | ||
035 | |a (DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Jianjun Wu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. | ||
650 | 4 | |a heterogeneous social network | |
650 | 4 | |a link prediction | |
650 | 4 | |a enhancing predictive expert | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Yuxue Hu |e verfasserin |4 aut | |
700 | 0 | |a Zhongqiang Huang |e verfasserin |4 aut | |
700 | 0 | |a Junsong Li |e verfasserin |4 aut | |
700 | 0 | |a Xiang Li |e verfasserin |4 aut | |
700 | 0 | |a Ying Sha |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 13(2023), 22, p 12437 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:22, p 12437 |
856 | 4 | 0 | |u https://doi.org/10.3390/app132212437 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/13/22/12437 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 22, p 12437 |
author_variant |
j w jw y h yh z h zh j l jl x l xl y s ys |
---|---|
matchkey_str |
article:20763417:2023----::nacnpeitveprmtofrikrdcinneeoeeuif |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/app132212437 doi (DE-627)DOAJ101278152 (DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jianjun Wu verfasserin aut Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. heterogeneous social network link prediction enhancing predictive expert Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Yuxue Hu verfasserin aut Zhongqiang Huang verfasserin aut Junsong Li verfasserin aut Xiang Li verfasserin aut Ying Sha verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 22, p 12437 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:22, p 12437 https://doi.org/10.3390/app132212437 kostenfrei https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df kostenfrei https://www.mdpi.com/2076-3417/13/22/12437 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 22, p 12437 |
spelling |
10.3390/app132212437 doi (DE-627)DOAJ101278152 (DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jianjun Wu verfasserin aut Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. heterogeneous social network link prediction enhancing predictive expert Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Yuxue Hu verfasserin aut Zhongqiang Huang verfasserin aut Junsong Li verfasserin aut Xiang Li verfasserin aut Ying Sha verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 22, p 12437 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:22, p 12437 https://doi.org/10.3390/app132212437 kostenfrei https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df kostenfrei https://www.mdpi.com/2076-3417/13/22/12437 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 22, p 12437 |
allfields_unstemmed |
10.3390/app132212437 doi (DE-627)DOAJ101278152 (DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jianjun Wu verfasserin aut Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. heterogeneous social network link prediction enhancing predictive expert Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Yuxue Hu verfasserin aut Zhongqiang Huang verfasserin aut Junsong Li verfasserin aut Xiang Li verfasserin aut Ying Sha verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 22, p 12437 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:22, p 12437 https://doi.org/10.3390/app132212437 kostenfrei https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df kostenfrei https://www.mdpi.com/2076-3417/13/22/12437 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 22, p 12437 |
allfieldsGer |
10.3390/app132212437 doi (DE-627)DOAJ101278152 (DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jianjun Wu verfasserin aut Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. heterogeneous social network link prediction enhancing predictive expert Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Yuxue Hu verfasserin aut Zhongqiang Huang verfasserin aut Junsong Li verfasserin aut Xiang Li verfasserin aut Ying Sha verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 22, p 12437 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:22, p 12437 https://doi.org/10.3390/app132212437 kostenfrei https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df kostenfrei https://www.mdpi.com/2076-3417/13/22/12437 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 22, p 12437 |
allfieldsSound |
10.3390/app132212437 doi (DE-627)DOAJ101278152 (DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jianjun Wu verfasserin aut Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. heterogeneous social network link prediction enhancing predictive expert Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Yuxue Hu verfasserin aut Zhongqiang Huang verfasserin aut Junsong Li verfasserin aut Xiang Li verfasserin aut Ying Sha verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 22, p 12437 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:22, p 12437 https://doi.org/10.3390/app132212437 kostenfrei https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df kostenfrei https://www.mdpi.com/2076-3417/13/22/12437 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 22, p 12437 |
language |
English |
source |
In Applied Sciences 13(2023), 22, p 12437 volume:13 year:2023 number:22, p 12437 |
sourceStr |
In Applied Sciences 13(2023), 22, p 12437 volume:13 year:2023 number:22, p 12437 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
heterogeneous social network link prediction enhancing predictive expert Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Jianjun Wu @@aut@@ Yuxue Hu @@aut@@ Zhongqiang Huang @@aut@@ Junsong Li @@aut@@ Xiang Li @@aut@@ Ying Sha @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ101278152 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101278152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414153414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app132212437</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101278152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianjun Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterogeneous social network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">link prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enhancing predictive expert</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuxue Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongqiang Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junsong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ying Sha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 22, p 12437</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22, p 12437</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app132212437</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/22/12437</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">22, p 12437</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jianjun Wu |
spellingShingle |
Jianjun Wu misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc heterogeneous social network misc link prediction misc enhancing predictive expert misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks |
authorStr |
Jianjun Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks heterogeneous social network link prediction enhancing predictive expert |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc heterogeneous social network misc link prediction misc enhancing predictive expert misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc heterogeneous social network misc link prediction misc enhancing predictive expert misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc heterogeneous social network misc link prediction misc enhancing predictive expert misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks |
ctrlnum |
(DE-627)DOAJ101278152 (DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df |
title_full |
Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks |
author_sort |
Jianjun Wu |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Jianjun Wu Yuxue Hu Zhongqiang Huang Junsong Li Xiang Li Ying Sha |
container_volume |
13 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianjun Wu |
doi_str_mv |
10.3390/app132212437 |
author2-role |
verfasserin |
title_sort |
enhancing predictive expert method for link prediction in heterogeneous information social networks |
callnumber |
TA1-2040 |
title_auth |
Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks |
abstract |
Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. |
abstractGer |
Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. |
abstract_unstemmed |
Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
22, p 12437 |
title_short |
Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks |
url |
https://doi.org/10.3390/app132212437 https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df https://www.mdpi.com/2076-3417/13/22/12437 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Yuxue Hu Zhongqiang Huang Junsong Li Xiang Li Ying Sha |
author2Str |
Yuxue Hu Zhongqiang Huang Junsong Li Xiang Li Ying Sha |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app132212437 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T19:44:45.882Z |
_version_ |
1803588349088235520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101278152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414153414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app132212437</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101278152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ632bdc7784bd436ea1c090b1fe8780df</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianjun Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing Predictive Expert Method for Link Prediction in Heterogeneous Information Social Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Link prediction is a critical prerequisite and foundation task for social network security that involves predicting the potential relationship between nodes within a network or graph. Although the existing methods show promising performance, they often ignore the unique attributes of each link type and the impact of diverse node differences on network topology when dealing with heterogeneous information networks (HINs), resulting in inaccurate predictions of unobserved links. To overcome this hurdle, we propose the Enhancing Predictive Expert Method (EPEM), a comprehensive framework that includes an individual feature projector, a predictive expert constructor, and a trustworthiness investor. The individual feature projector extracts the distinct characteristics associated with each link type, eliminating shared attributes that are common across all links. The predictive expert constructor then creates enhancing predictive experts, which improve predictive precision by incorporating the individual feature representations unique to each node category. Finally, the trustworthiness investor evaluates the reliability of each enhancing predictive expert and adjusts their contributions to the prediction outcomes accordingly. Our empirical evaluations on three diverse heterogeneous social network datasets demonstrate the effectiveness of EPEM in forecasting unobserved links, outperforming the state-of-the-art methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterogeneous social network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">link prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enhancing predictive expert</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuxue Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongqiang Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junsong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ying Sha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 22, p 12437</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22, p 12437</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app132212437</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/632bdc7784bd436ea1c090b1fe8780df</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/22/12437</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">22, p 12437</subfield></datafield></record></collection>
|
score |
7.4016542 |