Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton
(1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymo...
Ausführliche Beschreibung
Autor*in: |
Guangzhi Mao [verfasserIn] Hengling Wei [verfasserIn] Pengyun Chen [verfasserIn] Feng Xing [verfasserIn] Hantao Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agronomy - MDPI AG, 2012, 13(2023), 11, p 2716 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:11, p 2716 |
Links: |
---|
DOI / URN: |
10.3390/agronomy13112716 |
---|
Katalog-ID: |
DOAJ101286937 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101286937 | ||
003 | DE-627 | ||
005 | 20240414153610.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agronomy13112716 |2 doi | |
035 | |a (DE-627)DOAJ101286937 | ||
035 | |a (DE-599)DOAJf466775114a94466849952af58a7a991 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Guangzhi Mao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a (1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. | ||
650 | 4 | |a upland cotton (<i<Gossypium hirsutum</i< L.) | |
650 | 4 | |a genotyping by sequence (GBS) | |
650 | 4 | |a single nucleotide polymorphism (SNP) | |
650 | 4 | |a early-maturing trait | |
650 | 4 | |a quantitative trait locus (QTL) | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Hengling Wei |e verfasserin |4 aut | |
700 | 0 | |a Pengyun Chen |e verfasserin |4 aut | |
700 | 0 | |a Feng Xing |e verfasserin |4 aut | |
700 | 0 | |a Hantao Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agronomy |d MDPI AG, 2012 |g 13(2023), 11, p 2716 |w (DE-627)658000543 |w (DE-600)2607043-1 |x 20734395 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:11, p 2716 |
856 | 4 | 0 | |u https://doi.org/10.3390/agronomy13112716 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f466775114a94466849952af58a7a991 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4395/13/11/2716 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4395 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 11, p 2716 |
author_variant |
g m gm h w hw p c pc f x fx h w hw |
---|---|
matchkey_str |
article:20734395:2023----::plctooaihestsnlncetdplmrhsgntcaimpiguniaierilcoe |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/agronomy13112716 doi (DE-627)DOAJ101286937 (DE-599)DOAJf466775114a94466849952af58a7a991 DE-627 ger DE-627 rakwb eng Guangzhi Mao verfasserin aut Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. upland cotton (<i<Gossypium hirsutum</i< L.) genotyping by sequence (GBS) single nucleotide polymorphism (SNP) early-maturing trait quantitative trait locus (QTL) Agriculture S Hengling Wei verfasserin aut Pengyun Chen verfasserin aut Feng Xing verfasserin aut Hantao Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 11, p 2716 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:11, p 2716 https://doi.org/10.3390/agronomy13112716 kostenfrei https://doaj.org/article/f466775114a94466849952af58a7a991 kostenfrei https://www.mdpi.com/2073-4395/13/11/2716 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 11, p 2716 |
spelling |
10.3390/agronomy13112716 doi (DE-627)DOAJ101286937 (DE-599)DOAJf466775114a94466849952af58a7a991 DE-627 ger DE-627 rakwb eng Guangzhi Mao verfasserin aut Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. upland cotton (<i<Gossypium hirsutum</i< L.) genotyping by sequence (GBS) single nucleotide polymorphism (SNP) early-maturing trait quantitative trait locus (QTL) Agriculture S Hengling Wei verfasserin aut Pengyun Chen verfasserin aut Feng Xing verfasserin aut Hantao Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 11, p 2716 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:11, p 2716 https://doi.org/10.3390/agronomy13112716 kostenfrei https://doaj.org/article/f466775114a94466849952af58a7a991 kostenfrei https://www.mdpi.com/2073-4395/13/11/2716 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 11, p 2716 |
allfields_unstemmed |
10.3390/agronomy13112716 doi (DE-627)DOAJ101286937 (DE-599)DOAJf466775114a94466849952af58a7a991 DE-627 ger DE-627 rakwb eng Guangzhi Mao verfasserin aut Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. upland cotton (<i<Gossypium hirsutum</i< L.) genotyping by sequence (GBS) single nucleotide polymorphism (SNP) early-maturing trait quantitative trait locus (QTL) Agriculture S Hengling Wei verfasserin aut Pengyun Chen verfasserin aut Feng Xing verfasserin aut Hantao Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 11, p 2716 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:11, p 2716 https://doi.org/10.3390/agronomy13112716 kostenfrei https://doaj.org/article/f466775114a94466849952af58a7a991 kostenfrei https://www.mdpi.com/2073-4395/13/11/2716 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 11, p 2716 |
allfieldsGer |
10.3390/agronomy13112716 doi (DE-627)DOAJ101286937 (DE-599)DOAJf466775114a94466849952af58a7a991 DE-627 ger DE-627 rakwb eng Guangzhi Mao verfasserin aut Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. upland cotton (<i<Gossypium hirsutum</i< L.) genotyping by sequence (GBS) single nucleotide polymorphism (SNP) early-maturing trait quantitative trait locus (QTL) Agriculture S Hengling Wei verfasserin aut Pengyun Chen verfasserin aut Feng Xing verfasserin aut Hantao Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 11, p 2716 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:11, p 2716 https://doi.org/10.3390/agronomy13112716 kostenfrei https://doaj.org/article/f466775114a94466849952af58a7a991 kostenfrei https://www.mdpi.com/2073-4395/13/11/2716 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 11, p 2716 |
allfieldsSound |
10.3390/agronomy13112716 doi (DE-627)DOAJ101286937 (DE-599)DOAJf466775114a94466849952af58a7a991 DE-627 ger DE-627 rakwb eng Guangzhi Mao verfasserin aut Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. upland cotton (<i<Gossypium hirsutum</i< L.) genotyping by sequence (GBS) single nucleotide polymorphism (SNP) early-maturing trait quantitative trait locus (QTL) Agriculture S Hengling Wei verfasserin aut Pengyun Chen verfasserin aut Feng Xing verfasserin aut Hantao Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 11, p 2716 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:11, p 2716 https://doi.org/10.3390/agronomy13112716 kostenfrei https://doaj.org/article/f466775114a94466849952af58a7a991 kostenfrei https://www.mdpi.com/2073-4395/13/11/2716 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 11, p 2716 |
language |
English |
source |
In Agronomy 13(2023), 11, p 2716 volume:13 year:2023 number:11, p 2716 |
sourceStr |
In Agronomy 13(2023), 11, p 2716 volume:13 year:2023 number:11, p 2716 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
upland cotton (<i<Gossypium hirsutum</i< L.) genotyping by sequence (GBS) single nucleotide polymorphism (SNP) early-maturing trait quantitative trait locus (QTL) Agriculture S |
isfreeaccess_bool |
true |
container_title |
Agronomy |
authorswithroles_txt_mv |
Guangzhi Mao @@aut@@ Hengling Wei @@aut@@ Pengyun Chen @@aut@@ Feng Xing @@aut@@ Hantao Wang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
658000543 |
id |
DOAJ101286937 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101286937</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414153610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy13112716</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101286937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf466775114a94466849952af58a7a991</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guangzhi Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">(1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">upland cotton (<i<Gossypium hirsutum</i< L.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genotyping by sequence (GBS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single nucleotide polymorphism (SNP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early-maturing trait</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantitative trait locus (QTL)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hengling Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pengyun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Xing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hantao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 11, p 2716</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p 2716</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy13112716</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f466775114a94466849952af58a7a991</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/13/11/2716</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">11, p 2716</subfield></datafield></record></collection>
|
author |
Guangzhi Mao |
spellingShingle |
Guangzhi Mao misc upland cotton (<i<Gossypium hirsutum</i< L.) misc genotyping by sequence (GBS) misc single nucleotide polymorphism (SNP) misc early-maturing trait misc quantitative trait locus (QTL) misc Agriculture misc S Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton |
authorStr |
Guangzhi Mao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)658000543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20734395 |
topic_title |
Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton upland cotton (<i<Gossypium hirsutum</i< L.) genotyping by sequence (GBS) single nucleotide polymorphism (SNP) early-maturing trait quantitative trait locus (QTL) |
topic |
misc upland cotton (<i<Gossypium hirsutum</i< L.) misc genotyping by sequence (GBS) misc single nucleotide polymorphism (SNP) misc early-maturing trait misc quantitative trait locus (QTL) misc Agriculture misc S |
topic_unstemmed |
misc upland cotton (<i<Gossypium hirsutum</i< L.) misc genotyping by sequence (GBS) misc single nucleotide polymorphism (SNP) misc early-maturing trait misc quantitative trait locus (QTL) misc Agriculture misc S |
topic_browse |
misc upland cotton (<i<Gossypium hirsutum</i< L.) misc genotyping by sequence (GBS) misc single nucleotide polymorphism (SNP) misc early-maturing trait misc quantitative trait locus (QTL) misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomy |
hierarchy_parent_id |
658000543 |
hierarchy_top_title |
Agronomy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)658000543 (DE-600)2607043-1 |
title |
Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton |
ctrlnum |
(DE-627)DOAJ101286937 (DE-599)DOAJf466775114a94466849952af58a7a991 |
title_full |
Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton |
author_sort |
Guangzhi Mao |
journal |
Agronomy |
journalStr |
Agronomy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Guangzhi Mao Hengling Wei Pengyun Chen Feng Xing Hantao Wang |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Guangzhi Mao |
doi_str_mv |
10.3390/agronomy13112716 |
author2-role |
verfasserin |
title_sort |
application of a high-density single nucleotide polymorphism genetic map in mapping quantitative trait loci of early-maturing traits in upland cotton |
title_auth |
Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton |
abstract |
(1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. |
abstractGer |
(1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. |
abstract_unstemmed |
(1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 2716 |
title_short |
Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton |
url |
https://doi.org/10.3390/agronomy13112716 https://doaj.org/article/f466775114a94466849952af58a7a991 https://www.mdpi.com/2073-4395/13/11/2716 https://doaj.org/toc/2073-4395 |
remote_bool |
true |
author2 |
Hengling Wei Pengyun Chen Feng Xing Hantao Wang |
author2Str |
Hengling Wei Pengyun Chen Feng Xing Hantao Wang |
ppnlink |
658000543 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agronomy13112716 |
up_date |
2024-07-03T19:48:14.675Z |
_version_ |
1803588568013078528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101286937</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414153610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy13112716</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101286937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf466775114a94466849952af58a7a991</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guangzhi Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">(1) Background: Mapping QTLs for early-maturing traits is necessary for the development of early-maturing variety breeding. (2) Methods: In this research, a high-density genetic map (HDGM) was constructed using an F<sub<2</sub< population with 100 individuals and single nucleotide polymorphism markers (SNPs) developed using the genotyping-by-sequencing (GBS) method. (3) Results: The HDGM, which covered a total distance of 3167.14 cM, harbored 5454 SNPs with an average marker interval of 0.58 cM. In total, 18 QTLs for four early-maturing characters were detected and explained 11.6–46.4% of phenotypic variation (PV). Two QTLs of the whole growing period (WGP) and height of the node of the first fruiting branch (HNFFB) were identified as stable QTLs. In total, 125 candidate genes were identified in the confidence intervals of these stable QTLs. Presumably, <i<Gh_D03G0857</i< may play an important role in regulating earliness. (4) Conclusions: This research will provide new information about fine mapping of QTLs for earliness traits, molecular marker assisted selection (MAS) of earliness traits, and pyramiding breeding as well.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">upland cotton (<i<Gossypium hirsutum</i< L.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genotyping by sequence (GBS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single nucleotide polymorphism (SNP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early-maturing trait</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantitative trait locus (QTL)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hengling Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pengyun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Xing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hantao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 11, p 2716</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p 2716</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy13112716</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f466775114a94466849952af58a7a991</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/13/11/2716</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">11, p 2716</subfield></datafield></record></collection>
|
score |
7.401087 |