Comparison of Doses in Lunar Habitats Located at the Surface and in Crater
As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation...
Ausführliche Beschreibung
Autor*in: |
Naser T. Burahmah [verfasserIn] Lawrence H. Heilbronn [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Aerospace - MDPI AG, 2014, 10(2023), 11, p 970 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2023 ; number:11, p 970 |
Links: |
---|
DOI / URN: |
10.3390/aerospace10110970 |
---|
Katalog-ID: |
DOAJ101288816 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101288816 | ||
003 | DE-627 | ||
005 | 20240414153636.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/aerospace10110970 |2 doi | |
035 | |a (DE-627)DOAJ101288816 | ||
035 | |a (DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TL1-4050 | |
100 | 0 | |a Naser T. Burahmah |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparison of Doses in Lunar Habitats Located at the Surface and in Crater |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. | ||
650 | 4 | |a lunar radiation | |
650 | 4 | |a moon | |
650 | 4 | |a PHITS | |
650 | 4 | |a lunar missions | |
650 | 4 | |a GCR | |
653 | 0 | |a Motor vehicles. Aeronautics. Astronautics | |
700 | 0 | |a Lawrence H. Heilbronn |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Aerospace |d MDPI AG, 2014 |g 10(2023), 11, p 970 |w (DE-627)778375048 |w (DE-600)2756091-0 |x 22264310 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2023 |g number:11, p 970 |
856 | 4 | 0 | |u https://doi.org/10.3390/aerospace10110970 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2226-4310/10/11/970 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2226-4310 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2023 |e 11, p 970 |
author_variant |
n t b ntb l h h lhh |
---|---|
matchkey_str |
article:22264310:2023----::oprsnfoeilnraiasoaeate |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TL |
publishDate |
2023 |
allfields |
10.3390/aerospace10110970 doi (DE-627)DOAJ101288816 (DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb DE-627 ger DE-627 rakwb eng TL1-4050 Naser T. Burahmah verfasserin aut Comparison of Doses in Lunar Habitats Located at the Surface and in Crater 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. lunar radiation moon PHITS lunar missions GCR Motor vehicles. Aeronautics. Astronautics Lawrence H. Heilbronn verfasserin aut In Aerospace MDPI AG, 2014 10(2023), 11, p 970 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:10 year:2023 number:11, p 970 https://doi.org/10.3390/aerospace10110970 kostenfrei https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb kostenfrei https://www.mdpi.com/2226-4310/10/11/970 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 11, p 970 |
spelling |
10.3390/aerospace10110970 doi (DE-627)DOAJ101288816 (DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb DE-627 ger DE-627 rakwb eng TL1-4050 Naser T. Burahmah verfasserin aut Comparison of Doses in Lunar Habitats Located at the Surface and in Crater 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. lunar radiation moon PHITS lunar missions GCR Motor vehicles. Aeronautics. Astronautics Lawrence H. Heilbronn verfasserin aut In Aerospace MDPI AG, 2014 10(2023), 11, p 970 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:10 year:2023 number:11, p 970 https://doi.org/10.3390/aerospace10110970 kostenfrei https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb kostenfrei https://www.mdpi.com/2226-4310/10/11/970 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 11, p 970 |
allfields_unstemmed |
10.3390/aerospace10110970 doi (DE-627)DOAJ101288816 (DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb DE-627 ger DE-627 rakwb eng TL1-4050 Naser T. Burahmah verfasserin aut Comparison of Doses in Lunar Habitats Located at the Surface and in Crater 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. lunar radiation moon PHITS lunar missions GCR Motor vehicles. Aeronautics. Astronautics Lawrence H. Heilbronn verfasserin aut In Aerospace MDPI AG, 2014 10(2023), 11, p 970 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:10 year:2023 number:11, p 970 https://doi.org/10.3390/aerospace10110970 kostenfrei https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb kostenfrei https://www.mdpi.com/2226-4310/10/11/970 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 11, p 970 |
allfieldsGer |
10.3390/aerospace10110970 doi (DE-627)DOAJ101288816 (DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb DE-627 ger DE-627 rakwb eng TL1-4050 Naser T. Burahmah verfasserin aut Comparison of Doses in Lunar Habitats Located at the Surface and in Crater 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. lunar radiation moon PHITS lunar missions GCR Motor vehicles. Aeronautics. Astronautics Lawrence H. Heilbronn verfasserin aut In Aerospace MDPI AG, 2014 10(2023), 11, p 970 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:10 year:2023 number:11, p 970 https://doi.org/10.3390/aerospace10110970 kostenfrei https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb kostenfrei https://www.mdpi.com/2226-4310/10/11/970 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 11, p 970 |
allfieldsSound |
10.3390/aerospace10110970 doi (DE-627)DOAJ101288816 (DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb DE-627 ger DE-627 rakwb eng TL1-4050 Naser T. Burahmah verfasserin aut Comparison of Doses in Lunar Habitats Located at the Surface and in Crater 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. lunar radiation moon PHITS lunar missions GCR Motor vehicles. Aeronautics. Astronautics Lawrence H. Heilbronn verfasserin aut In Aerospace MDPI AG, 2014 10(2023), 11, p 970 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:10 year:2023 number:11, p 970 https://doi.org/10.3390/aerospace10110970 kostenfrei https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb kostenfrei https://www.mdpi.com/2226-4310/10/11/970 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 11, p 970 |
language |
English |
source |
In Aerospace 10(2023), 11, p 970 volume:10 year:2023 number:11, p 970 |
sourceStr |
In Aerospace 10(2023), 11, p 970 volume:10 year:2023 number:11, p 970 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
lunar radiation moon PHITS lunar missions GCR Motor vehicles. Aeronautics. Astronautics |
isfreeaccess_bool |
true |
container_title |
Aerospace |
authorswithroles_txt_mv |
Naser T. Burahmah @@aut@@ Lawrence H. Heilbronn @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
778375048 |
id |
DOAJ101288816 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101288816</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414153636.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/aerospace10110970</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101288816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL1-4050</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Naser T. Burahmah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of Doses in Lunar Habitats Located at the Surface and in Crater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lunar radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PHITS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lunar missions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GCR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Motor vehicles. Aeronautics. Astronautics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lawrence H. Heilbronn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Aerospace</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2023), 11, p 970</subfield><subfield code="w">(DE-627)778375048</subfield><subfield code="w">(DE-600)2756091-0</subfield><subfield code="x">22264310</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p 970</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/aerospace10110970</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2226-4310/10/11/970</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2226-4310</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">11, p 970</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Naser T. Burahmah |
spellingShingle |
Naser T. Burahmah misc TL1-4050 misc lunar radiation misc moon misc PHITS misc lunar missions misc GCR misc Motor vehicles. Aeronautics. Astronautics Comparison of Doses in Lunar Habitats Located at the Surface and in Crater |
authorStr |
Naser T. Burahmah |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)778375048 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TL1-4050 |
illustrated |
Not Illustrated |
issn |
22264310 |
topic_title |
TL1-4050 Comparison of Doses in Lunar Habitats Located at the Surface and in Crater lunar radiation moon PHITS lunar missions GCR |
topic |
misc TL1-4050 misc lunar radiation misc moon misc PHITS misc lunar missions misc GCR misc Motor vehicles. Aeronautics. Astronautics |
topic_unstemmed |
misc TL1-4050 misc lunar radiation misc moon misc PHITS misc lunar missions misc GCR misc Motor vehicles. Aeronautics. Astronautics |
topic_browse |
misc TL1-4050 misc lunar radiation misc moon misc PHITS misc lunar missions misc GCR misc Motor vehicles. Aeronautics. Astronautics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Aerospace |
hierarchy_parent_id |
778375048 |
hierarchy_top_title |
Aerospace |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)778375048 (DE-600)2756091-0 |
title |
Comparison of Doses in Lunar Habitats Located at the Surface and in Crater |
ctrlnum |
(DE-627)DOAJ101288816 (DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb |
title_full |
Comparison of Doses in Lunar Habitats Located at the Surface and in Crater |
author_sort |
Naser T. Burahmah |
journal |
Aerospace |
journalStr |
Aerospace |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Naser T. Burahmah Lawrence H. Heilbronn |
container_volume |
10 |
class |
TL1-4050 |
format_se |
Elektronische Aufsätze |
author-letter |
Naser T. Burahmah |
doi_str_mv |
10.3390/aerospace10110970 |
author2-role |
verfasserin |
title_sort |
comparison of doses in lunar habitats located at the surface and in crater |
callnumber |
TL1-4050 |
title_auth |
Comparison of Doses in Lunar Habitats Located at the Surface and in Crater |
abstract |
As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. |
abstractGer |
As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. |
abstract_unstemmed |
As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 970 |
title_short |
Comparison of Doses in Lunar Habitats Located at the Surface and in Crater |
url |
https://doi.org/10.3390/aerospace10110970 https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb https://www.mdpi.com/2226-4310/10/11/970 https://doaj.org/toc/2226-4310 |
remote_bool |
true |
author2 |
Lawrence H. Heilbronn |
author2Str |
Lawrence H. Heilbronn |
ppnlink |
778375048 |
callnumber-subject |
TL - Motor Vehicles and Aeronautics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/aerospace10110970 |
callnumber-a |
TL1-4050 |
up_date |
2024-07-03T19:49:00.485Z |
_version_ |
1803588616047296512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101288816</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414153636.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/aerospace10110970</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101288816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ69623785e21b406f8f1c1ff22c373dcb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL1-4050</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Naser T. Burahmah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of Doses in Lunar Habitats Located at the Surface and in Crater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As humanity prepares for extended lunar exploration, understanding the radiation environment on the Moon is important for astronaut safety. This study utilized the Particle and Heavy-Ion Transport code System (PHITS), a stochastic Monte Carlo-based radiation transport code, to simulate the radiation environment inside a habitat, focusing on the impact of galactic cosmic rays (GCRs) interacting with local lunar and habitat material, and to calculate the effective dose equivalent. Placing a lunar base in a crater can provide additional shielding by reducing the GCR flux incident on the base. Furthermore, the secondary radiation field created by GCR interactions may be altered by the local topological features. GCR transport calculations were performed for a hypothetical base on a flat surface and in shallow and deep craters to determine the overall efficacy in dose reduction gained by placing a base in a 100 m diameter crater. Our findings indicate that the depth of lunar habitats significantly influences the effective dose equivalent, with deeper locations offering substantial protection. Specifically, alongside a crater wall at a deep depth (15 m), in solar minimum conditions, the total dose was reduced by approximately 44.9% compared to the dose at the surface. Similarly, at a shallow depth (5 m), a reduction of approximately 10.7% was observed. As the depth of the crater increased, the neutron contribution to the total dose also increased. Comparing the simulated doses to NASA’s lifetime exposure limits provides insights into mission planning and astronaut safety, emphasizing the importance of strategic habitat placement and design.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lunar radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PHITS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lunar missions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GCR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Motor vehicles. Aeronautics. Astronautics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lawrence H. Heilbronn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Aerospace</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2023), 11, p 970</subfield><subfield code="w">(DE-627)778375048</subfield><subfield code="w">(DE-600)2756091-0</subfield><subfield code="x">22264310</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p 970</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/aerospace10110970</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/69623785e21b406f8f1c1ff22c373dcb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2226-4310/10/11/970</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2226-4310</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">11, p 970</subfield></datafield></record></collection>
|
score |
7.400977 |