On a relation between GAG codes and AG codes
In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a su...
Ausführliche Beschreibung
Autor*in: |
Şenel Engin [verfasserIn] Öke Figen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica - Sciendo, 2008, 31(2023), 3, Seite 221-227 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2023 ; number:3 ; pages:221-227 |
Links: |
---|
DOI / URN: |
10.2478/auom-2023-0040 |
---|
Katalog-ID: |
DOAJ101306547 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101306547 | ||
003 | DE-627 | ||
005 | 20240414160554.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2478/auom-2023-0040 |2 doi | |
035 | |a (DE-627)DOAJ101306547 | ||
035 | |a (DE-599)DOAJ99343565b8574036bb2fa41e812a562f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Şenel Engin |e verfasserin |4 aut | |
245 | 1 | 0 | |a On a relation between GAG codes and AG codes |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. | ||
650 | 4 | |a algebraic geometry codes | |
650 | 4 | |a generalized algebraic geometry codes | |
650 | 4 | |a geometric goppa codes | |
650 | 4 | |a code automorphisms | |
650 | 4 | |a algebraic function fields | |
650 | 4 | |a primary 94b27 | |
650 | 4 | |a secondary 14h05, 14g50 | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Öke Figen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |d Sciendo, 2008 |g 31(2023), 3, Seite 221-227 |w (DE-627)535187017 |w (DE-600)2375753-X |x 18440835 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2023 |g number:3 |g pages:221-227 |
856 | 4 | 0 | |u https://doi.org/10.2478/auom-2023-0040 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/99343565b8574036bb2fa41e812a562f |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.2478/auom-2023-0040 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1844-0835 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 31 |j 2023 |e 3 |h 221-227 |
author_variant |
ş e şe ö f öf |
---|---|
matchkey_str |
article:18440835:2023----::nrltobtenacds |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.2478/auom-2023-0040 doi (DE-627)DOAJ101306547 (DE-599)DOAJ99343565b8574036bb2fa41e812a562f DE-627 ger DE-627 rakwb eng QA1-939 Şenel Engin verfasserin aut On a relation between GAG codes and AG codes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. algebraic geometry codes generalized algebraic geometry codes geometric goppa codes code automorphisms algebraic function fields primary 94b27 secondary 14h05, 14g50 Mathematics Öke Figen verfasserin aut In Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica Sciendo, 2008 31(2023), 3, Seite 221-227 (DE-627)535187017 (DE-600)2375753-X 18440835 nnns volume:31 year:2023 number:3 pages:221-227 https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/article/99343565b8574036bb2fa41e812a562f kostenfrei https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/toc/1844-0835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2023 3 221-227 |
spelling |
10.2478/auom-2023-0040 doi (DE-627)DOAJ101306547 (DE-599)DOAJ99343565b8574036bb2fa41e812a562f DE-627 ger DE-627 rakwb eng QA1-939 Şenel Engin verfasserin aut On a relation between GAG codes and AG codes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. algebraic geometry codes generalized algebraic geometry codes geometric goppa codes code automorphisms algebraic function fields primary 94b27 secondary 14h05, 14g50 Mathematics Öke Figen verfasserin aut In Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica Sciendo, 2008 31(2023), 3, Seite 221-227 (DE-627)535187017 (DE-600)2375753-X 18440835 nnns volume:31 year:2023 number:3 pages:221-227 https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/article/99343565b8574036bb2fa41e812a562f kostenfrei https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/toc/1844-0835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2023 3 221-227 |
allfields_unstemmed |
10.2478/auom-2023-0040 doi (DE-627)DOAJ101306547 (DE-599)DOAJ99343565b8574036bb2fa41e812a562f DE-627 ger DE-627 rakwb eng QA1-939 Şenel Engin verfasserin aut On a relation between GAG codes and AG codes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. algebraic geometry codes generalized algebraic geometry codes geometric goppa codes code automorphisms algebraic function fields primary 94b27 secondary 14h05, 14g50 Mathematics Öke Figen verfasserin aut In Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica Sciendo, 2008 31(2023), 3, Seite 221-227 (DE-627)535187017 (DE-600)2375753-X 18440835 nnns volume:31 year:2023 number:3 pages:221-227 https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/article/99343565b8574036bb2fa41e812a562f kostenfrei https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/toc/1844-0835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2023 3 221-227 |
allfieldsGer |
10.2478/auom-2023-0040 doi (DE-627)DOAJ101306547 (DE-599)DOAJ99343565b8574036bb2fa41e812a562f DE-627 ger DE-627 rakwb eng QA1-939 Şenel Engin verfasserin aut On a relation between GAG codes and AG codes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. algebraic geometry codes generalized algebraic geometry codes geometric goppa codes code automorphisms algebraic function fields primary 94b27 secondary 14h05, 14g50 Mathematics Öke Figen verfasserin aut In Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica Sciendo, 2008 31(2023), 3, Seite 221-227 (DE-627)535187017 (DE-600)2375753-X 18440835 nnns volume:31 year:2023 number:3 pages:221-227 https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/article/99343565b8574036bb2fa41e812a562f kostenfrei https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/toc/1844-0835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2023 3 221-227 |
allfieldsSound |
10.2478/auom-2023-0040 doi (DE-627)DOAJ101306547 (DE-599)DOAJ99343565b8574036bb2fa41e812a562f DE-627 ger DE-627 rakwb eng QA1-939 Şenel Engin verfasserin aut On a relation between GAG codes and AG codes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. algebraic geometry codes generalized algebraic geometry codes geometric goppa codes code automorphisms algebraic function fields primary 94b27 secondary 14h05, 14g50 Mathematics Öke Figen verfasserin aut In Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica Sciendo, 2008 31(2023), 3, Seite 221-227 (DE-627)535187017 (DE-600)2375753-X 18440835 nnns volume:31 year:2023 number:3 pages:221-227 https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/article/99343565b8574036bb2fa41e812a562f kostenfrei https://doi.org/10.2478/auom-2023-0040 kostenfrei https://doaj.org/toc/1844-0835 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2023 3 221-227 |
language |
English |
source |
In Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica 31(2023), 3, Seite 221-227 volume:31 year:2023 number:3 pages:221-227 |
sourceStr |
In Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica 31(2023), 3, Seite 221-227 volume:31 year:2023 number:3 pages:221-227 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
algebraic geometry codes generalized algebraic geometry codes geometric goppa codes code automorphisms algebraic function fields primary 94b27 secondary 14h05, 14g50 Mathematics |
isfreeaccess_bool |
true |
container_title |
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
authorswithroles_txt_mv |
Şenel Engin @@aut@@ Öke Figen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
535187017 |
id |
DOAJ101306547 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101306547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414160554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/auom-2023-0040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101306547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ99343565b8574036bb2fa41e812a562f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Şenel Engin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a relation between GAG codes and AG codes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algebraic geometry codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized algebraic geometry codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometric goppa codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">code automorphisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algebraic function fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primary 94b27</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">secondary 14h05, 14g50</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Öke Figen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica</subfield><subfield code="d">Sciendo, 2008</subfield><subfield code="g">31(2023), 3, Seite 221-227</subfield><subfield code="w">(DE-627)535187017</subfield><subfield code="w">(DE-600)2375753-X</subfield><subfield code="x">18440835</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:221-227</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/auom-2023-0040</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/99343565b8574036bb2fa41e812a562f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/auom-2023-0040</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1844-0835</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">221-227</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Şenel Engin |
spellingShingle |
Şenel Engin misc QA1-939 misc algebraic geometry codes misc generalized algebraic geometry codes misc geometric goppa codes misc code automorphisms misc algebraic function fields misc primary 94b27 misc secondary 14h05, 14g50 misc Mathematics On a relation between GAG codes and AG codes |
authorStr |
Şenel Engin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)535187017 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
18440835 |
topic_title |
QA1-939 On a relation between GAG codes and AG codes algebraic geometry codes generalized algebraic geometry codes geometric goppa codes code automorphisms algebraic function fields primary 94b27 secondary 14h05, 14g50 |
topic |
misc QA1-939 misc algebraic geometry codes misc generalized algebraic geometry codes misc geometric goppa codes misc code automorphisms misc algebraic function fields misc primary 94b27 misc secondary 14h05, 14g50 misc Mathematics |
topic_unstemmed |
misc QA1-939 misc algebraic geometry codes misc generalized algebraic geometry codes misc geometric goppa codes misc code automorphisms misc algebraic function fields misc primary 94b27 misc secondary 14h05, 14g50 misc Mathematics |
topic_browse |
misc QA1-939 misc algebraic geometry codes misc generalized algebraic geometry codes misc geometric goppa codes misc code automorphisms misc algebraic function fields misc primary 94b27 misc secondary 14h05, 14g50 misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
hierarchy_parent_id |
535187017 |
hierarchy_top_title |
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)535187017 (DE-600)2375753-X |
title |
On a relation between GAG codes and AG codes |
ctrlnum |
(DE-627)DOAJ101306547 (DE-599)DOAJ99343565b8574036bb2fa41e812a562f |
title_full |
On a relation between GAG codes and AG codes |
author_sort |
Şenel Engin |
journal |
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
journalStr |
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
221 |
author_browse |
Şenel Engin Öke Figen |
container_volume |
31 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Şenel Engin |
doi_str_mv |
10.2478/auom-2023-0040 |
author2-role |
verfasserin |
title_sort |
on a relation between gag codes and ag codes |
callnumber |
QA1-939 |
title_auth |
On a relation between GAG codes and AG codes |
abstract |
In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. |
abstractGer |
In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. |
abstract_unstemmed |
In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
On a relation between GAG codes and AG codes |
url |
https://doi.org/10.2478/auom-2023-0040 https://doaj.org/article/99343565b8574036bb2fa41e812a562f https://doaj.org/toc/1844-0835 |
remote_bool |
true |
author2 |
Öke Figen |
author2Str |
Öke Figen |
ppnlink |
535187017 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2478/auom-2023-0040 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T19:54:26.676Z |
_version_ |
1803588958082301952 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101306547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414160554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/auom-2023-0040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101306547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ99343565b8574036bb2fa41e812a562f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Şenel Engin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a relation between GAG codes and AG codes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we first give a relationship between generalized algebraic geometry codes (GAG codes) and algebraic geometry codes (AG codes). More precisely, we show that a GAG code is contained (up to isomorphism) in a suitable AG code. Next we recall the concept of an N1N2-automorphism group, a subgroup of the automorphism group of a GAG code. With the use of the relation we obtained between these two classes of codes, we show that the N1N2-automorphism group is a subgroup of the automorphism group of an AG code.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algebraic geometry codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized algebraic geometry codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometric goppa codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">code automorphisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algebraic function fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primary 94b27</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">secondary 14h05, 14g50</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Öke Figen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica</subfield><subfield code="d">Sciendo, 2008</subfield><subfield code="g">31(2023), 3, Seite 221-227</subfield><subfield code="w">(DE-627)535187017</subfield><subfield code="w">(DE-600)2375753-X</subfield><subfield code="x">18440835</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:221-227</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/auom-2023-0040</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/99343565b8574036bb2fa41e812a562f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/auom-2023-0040</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1844-0835</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">221-227</subfield></datafield></record></collection>
|
score |
7.400646 |