A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection
Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and signi...
Ausführliche Beschreibung
Autor*in: |
Nomica Choudhry [verfasserIn] Jemal Abawajy [verfasserIn] Shamsul Huda [verfasserIn] Imran Rao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 11(2023), Seite 114680-114713 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; pages:114680-114713 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2023.3321800 |
---|
Katalog-ID: |
DOAJ101332351 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101332351 | ||
003 | DE-627 | ||
005 | 20240414161618.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2023.3321800 |2 doi | |
035 | |a (DE-627)DOAJ101332351 | ||
035 | |a (DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Nomica Choudhry |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a anomaly detection | |
650 | 4 | |a video surveillance systems | |
650 | 4 | |a supervised learning methods | |
650 | 4 | |a unsupervised learning methods | |
650 | 4 | |a semi-supervised learning methods | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jemal Abawajy |e verfasserin |4 aut | |
700 | 0 | |a Shamsul Huda |e verfasserin |4 aut | |
700 | 0 | |a Imran Rao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 11(2023), Seite 114680-114713 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g pages:114680-114713 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2023.3321800 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10271300/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |h 114680-114713 |
author_variant |
n c nc j a ja s h sh i r ir |
---|---|
matchkey_str |
article:21693536:2023----::cmrhnieuvyfahnlannmtososrelacv |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1109/ACCESS.2023.3321800 doi (DE-627)DOAJ101332351 (DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630 DE-627 ger DE-627 rakwb eng TK1-9971 Nomica Choudhry verfasserin aut A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. Machine learning anomaly detection video surveillance systems supervised learning methods unsupervised learning methods semi-supervised learning methods Electrical engineering. Electronics. Nuclear engineering Jemal Abawajy verfasserin aut Shamsul Huda verfasserin aut Imran Rao verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 114680-114713 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:114680-114713 https://doi.org/10.1109/ACCESS.2023.3321800 kostenfrei https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630 kostenfrei https://ieeexplore.ieee.org/document/10271300/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 114680-114713 |
spelling |
10.1109/ACCESS.2023.3321800 doi (DE-627)DOAJ101332351 (DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630 DE-627 ger DE-627 rakwb eng TK1-9971 Nomica Choudhry verfasserin aut A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. Machine learning anomaly detection video surveillance systems supervised learning methods unsupervised learning methods semi-supervised learning methods Electrical engineering. Electronics. Nuclear engineering Jemal Abawajy verfasserin aut Shamsul Huda verfasserin aut Imran Rao verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 114680-114713 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:114680-114713 https://doi.org/10.1109/ACCESS.2023.3321800 kostenfrei https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630 kostenfrei https://ieeexplore.ieee.org/document/10271300/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 114680-114713 |
allfields_unstemmed |
10.1109/ACCESS.2023.3321800 doi (DE-627)DOAJ101332351 (DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630 DE-627 ger DE-627 rakwb eng TK1-9971 Nomica Choudhry verfasserin aut A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. Machine learning anomaly detection video surveillance systems supervised learning methods unsupervised learning methods semi-supervised learning methods Electrical engineering. Electronics. Nuclear engineering Jemal Abawajy verfasserin aut Shamsul Huda verfasserin aut Imran Rao verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 114680-114713 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:114680-114713 https://doi.org/10.1109/ACCESS.2023.3321800 kostenfrei https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630 kostenfrei https://ieeexplore.ieee.org/document/10271300/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 114680-114713 |
allfieldsGer |
10.1109/ACCESS.2023.3321800 doi (DE-627)DOAJ101332351 (DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630 DE-627 ger DE-627 rakwb eng TK1-9971 Nomica Choudhry verfasserin aut A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. Machine learning anomaly detection video surveillance systems supervised learning methods unsupervised learning methods semi-supervised learning methods Electrical engineering. Electronics. Nuclear engineering Jemal Abawajy verfasserin aut Shamsul Huda verfasserin aut Imran Rao verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 114680-114713 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:114680-114713 https://doi.org/10.1109/ACCESS.2023.3321800 kostenfrei https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630 kostenfrei https://ieeexplore.ieee.org/document/10271300/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 114680-114713 |
allfieldsSound |
10.1109/ACCESS.2023.3321800 doi (DE-627)DOAJ101332351 (DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630 DE-627 ger DE-627 rakwb eng TK1-9971 Nomica Choudhry verfasserin aut A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. Machine learning anomaly detection video surveillance systems supervised learning methods unsupervised learning methods semi-supervised learning methods Electrical engineering. Electronics. Nuclear engineering Jemal Abawajy verfasserin aut Shamsul Huda verfasserin aut Imran Rao verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 114680-114713 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:114680-114713 https://doi.org/10.1109/ACCESS.2023.3321800 kostenfrei https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630 kostenfrei https://ieeexplore.ieee.org/document/10271300/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 114680-114713 |
language |
English |
source |
In IEEE Access 11(2023), Seite 114680-114713 volume:11 year:2023 pages:114680-114713 |
sourceStr |
In IEEE Access 11(2023), Seite 114680-114713 volume:11 year:2023 pages:114680-114713 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Machine learning anomaly detection video surveillance systems supervised learning methods unsupervised learning methods semi-supervised learning methods Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Nomica Choudhry @@aut@@ Jemal Abawajy @@aut@@ Shamsul Huda @@aut@@ Imran Rao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ101332351 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101332351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414161618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3321800</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101332351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nomica Choudhry</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anomaly detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">video surveillance systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supervised learning methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unsupervised learning methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semi-supervised learning methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jemal Abawajy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shamsul Huda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Imran Rao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">11(2023), Seite 114680-114713</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:114680-114713</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3321800</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10271300/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">114680-114713</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Nomica Choudhry |
spellingShingle |
Nomica Choudhry misc TK1-9971 misc Machine learning misc anomaly detection misc video surveillance systems misc supervised learning methods misc unsupervised learning methods misc semi-supervised learning methods misc Electrical engineering. Electronics. Nuclear engineering A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection |
authorStr |
Nomica Choudhry |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection Machine learning anomaly detection video surveillance systems supervised learning methods unsupervised learning methods semi-supervised learning methods |
topic |
misc TK1-9971 misc Machine learning misc anomaly detection misc video surveillance systems misc supervised learning methods misc unsupervised learning methods misc semi-supervised learning methods misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Machine learning misc anomaly detection misc video surveillance systems misc supervised learning methods misc unsupervised learning methods misc semi-supervised learning methods misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Machine learning misc anomaly detection misc video surveillance systems misc supervised learning methods misc unsupervised learning methods misc semi-supervised learning methods misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection |
ctrlnum |
(DE-627)DOAJ101332351 (DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630 |
title_full |
A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection |
author_sort |
Nomica Choudhry |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
114680 |
author_browse |
Nomica Choudhry Jemal Abawajy Shamsul Huda Imran Rao |
container_volume |
11 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Nomica Choudhry |
doi_str_mv |
10.1109/ACCESS.2023.3321800 |
author2-role |
verfasserin |
title_sort |
comprehensive survey of machine learning methods for surveillance videos anomaly detection |
callnumber |
TK1-9971 |
title_auth |
A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection |
abstract |
Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. |
abstractGer |
Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. |
abstract_unstemmed |
Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection |
url |
https://doi.org/10.1109/ACCESS.2023.3321800 https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630 https://ieeexplore.ieee.org/document/10271300/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jemal Abawajy Shamsul Huda Imran Rao |
author2Str |
Jemal Abawajy Shamsul Huda Imran Rao |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2023.3321800 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:03:28.171Z |
_version_ |
1803589525885157376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101332351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414161618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3321800</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101332351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ27ea3bb000674a348def7b2d8fc53630</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nomica Choudhry</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Video Surveillance Systems (VSSs) are used in a wide range of applications including public safety and perimeter security. They are deployed in places such as markets, hospitals, schools, banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and significant research has been published on the use of machine learning algorithms to handle surveillance data. In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of anomaly types for different domains are provided. Our study also offers insights into the future development of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners in the field. Finally, we share our thoughts on what we learned and how it can help with new developments in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anomaly detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">video surveillance systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supervised learning methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unsupervised learning methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semi-supervised learning methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jemal Abawajy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shamsul Huda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Imran Rao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">11(2023), Seite 114680-114713</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:114680-114713</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3321800</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/27ea3bb000674a348def7b2d8fc53630</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10271300/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">114680-114713</subfield></datafield></record></collection>
|
score |
7.3995466 |