Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery
Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three...
Ausführliche Beschreibung
Autor*in: |
Anas Bedraoui [verfasserIn] Montamas Suntravat [verfasserIn] Salim El Mejjad [verfasserIn] Salwa Enezari [verfasserIn] Naoual Oukkache [verfasserIn] Elda E. Sanchez [verfasserIn] Jacob A. Galan [verfasserIn] Rachid El Fatimy [verfasserIn] Tariq Daouda [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Medicine in Drug Discovery - Elsevier, 2019, 21(2024), Seite 100175- |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2024 ; pages:100175- |
Links: |
---|
DOI / URN: |
10.1016/j.medidd.2023.100175 |
---|
Katalog-ID: |
DOAJ101409729 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101409729 | ||
003 | DE-627 | ||
005 | 20240414163016.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.medidd.2023.100175 |2 doi | |
035 | |a (DE-627)DOAJ101409729 | ||
035 | |a (DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RS1-441 | |
100 | 0 | |a Anas Bedraoui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. | ||
650 | 4 | |a Snake venom | |
650 | 4 | |a Bioactive molecules | |
650 | 4 | |a Medical applications | |
650 | 4 | |a Drug discovery | |
650 | 4 | |a Toxin distribution | |
650 | 4 | |a Artificial intelligence | |
653 | 0 | |a Pharmacy and materia medica | |
700 | 0 | |a Montamas Suntravat |e verfasserin |4 aut | |
700 | 0 | |a Salim El Mejjad |e verfasserin |4 aut | |
700 | 0 | |a Salwa Enezari |e verfasserin |4 aut | |
700 | 0 | |a Naoual Oukkache |e verfasserin |4 aut | |
700 | 0 | |a Elda E. Sanchez |e verfasserin |4 aut | |
700 | 0 | |a Jacob A. Galan |e verfasserin |4 aut | |
700 | 0 | |a Rachid El Fatimy |e verfasserin |4 aut | |
700 | 0 | |a Tariq Daouda |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Medicine in Drug Discovery |d Elsevier, 2019 |g 21(2024), Seite 100175- |w (DE-627)1759810975 |x 25900986 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2024 |g pages:100175- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.medidd.2023.100175 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2590098623000258 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2590-0986 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2024 |h 100175- |
author_variant |
a b ab m s ms s e m sem s e se n o no e e s ees j a g jag r e f ref t d td |
---|---|
matchkey_str |
article:25900986:2024----::hrpuiptnilfnkvnmoidsrbtoadpotnteidela |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
RS |
publishDate |
2024 |
allfields |
10.1016/j.medidd.2023.100175 doi (DE-627)DOAJ101409729 (DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b DE-627 ger DE-627 rakwb eng RS1-441 Anas Bedraoui verfasserin aut Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. Snake venom Bioactive molecules Medical applications Drug discovery Toxin distribution Artificial intelligence Pharmacy and materia medica Montamas Suntravat verfasserin aut Salim El Mejjad verfasserin aut Salwa Enezari verfasserin aut Naoual Oukkache verfasserin aut Elda E. Sanchez verfasserin aut Jacob A. Galan verfasserin aut Rachid El Fatimy verfasserin aut Tariq Daouda verfasserin aut In Medicine in Drug Discovery Elsevier, 2019 21(2024), Seite 100175- (DE-627)1759810975 25900986 nnns volume:21 year:2024 pages:100175- https://doi.org/10.1016/j.medidd.2023.100175 kostenfrei https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b kostenfrei http://www.sciencedirect.com/science/article/pii/S2590098623000258 kostenfrei https://doaj.org/toc/2590-0986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2024 100175- |
spelling |
10.1016/j.medidd.2023.100175 doi (DE-627)DOAJ101409729 (DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b DE-627 ger DE-627 rakwb eng RS1-441 Anas Bedraoui verfasserin aut Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. Snake venom Bioactive molecules Medical applications Drug discovery Toxin distribution Artificial intelligence Pharmacy and materia medica Montamas Suntravat verfasserin aut Salim El Mejjad verfasserin aut Salwa Enezari verfasserin aut Naoual Oukkache verfasserin aut Elda E. Sanchez verfasserin aut Jacob A. Galan verfasserin aut Rachid El Fatimy verfasserin aut Tariq Daouda verfasserin aut In Medicine in Drug Discovery Elsevier, 2019 21(2024), Seite 100175- (DE-627)1759810975 25900986 nnns volume:21 year:2024 pages:100175- https://doi.org/10.1016/j.medidd.2023.100175 kostenfrei https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b kostenfrei http://www.sciencedirect.com/science/article/pii/S2590098623000258 kostenfrei https://doaj.org/toc/2590-0986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2024 100175- |
allfields_unstemmed |
10.1016/j.medidd.2023.100175 doi (DE-627)DOAJ101409729 (DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b DE-627 ger DE-627 rakwb eng RS1-441 Anas Bedraoui verfasserin aut Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. Snake venom Bioactive molecules Medical applications Drug discovery Toxin distribution Artificial intelligence Pharmacy and materia medica Montamas Suntravat verfasserin aut Salim El Mejjad verfasserin aut Salwa Enezari verfasserin aut Naoual Oukkache verfasserin aut Elda E. Sanchez verfasserin aut Jacob A. Galan verfasserin aut Rachid El Fatimy verfasserin aut Tariq Daouda verfasserin aut In Medicine in Drug Discovery Elsevier, 2019 21(2024), Seite 100175- (DE-627)1759810975 25900986 nnns volume:21 year:2024 pages:100175- https://doi.org/10.1016/j.medidd.2023.100175 kostenfrei https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b kostenfrei http://www.sciencedirect.com/science/article/pii/S2590098623000258 kostenfrei https://doaj.org/toc/2590-0986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2024 100175- |
allfieldsGer |
10.1016/j.medidd.2023.100175 doi (DE-627)DOAJ101409729 (DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b DE-627 ger DE-627 rakwb eng RS1-441 Anas Bedraoui verfasserin aut Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. Snake venom Bioactive molecules Medical applications Drug discovery Toxin distribution Artificial intelligence Pharmacy and materia medica Montamas Suntravat verfasserin aut Salim El Mejjad verfasserin aut Salwa Enezari verfasserin aut Naoual Oukkache verfasserin aut Elda E. Sanchez verfasserin aut Jacob A. Galan verfasserin aut Rachid El Fatimy verfasserin aut Tariq Daouda verfasserin aut In Medicine in Drug Discovery Elsevier, 2019 21(2024), Seite 100175- (DE-627)1759810975 25900986 nnns volume:21 year:2024 pages:100175- https://doi.org/10.1016/j.medidd.2023.100175 kostenfrei https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b kostenfrei http://www.sciencedirect.com/science/article/pii/S2590098623000258 kostenfrei https://doaj.org/toc/2590-0986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2024 100175- |
allfieldsSound |
10.1016/j.medidd.2023.100175 doi (DE-627)DOAJ101409729 (DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b DE-627 ger DE-627 rakwb eng RS1-441 Anas Bedraoui verfasserin aut Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. Snake venom Bioactive molecules Medical applications Drug discovery Toxin distribution Artificial intelligence Pharmacy and materia medica Montamas Suntravat verfasserin aut Salim El Mejjad verfasserin aut Salwa Enezari verfasserin aut Naoual Oukkache verfasserin aut Elda E. Sanchez verfasserin aut Jacob A. Galan verfasserin aut Rachid El Fatimy verfasserin aut Tariq Daouda verfasserin aut In Medicine in Drug Discovery Elsevier, 2019 21(2024), Seite 100175- (DE-627)1759810975 25900986 nnns volume:21 year:2024 pages:100175- https://doi.org/10.1016/j.medidd.2023.100175 kostenfrei https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b kostenfrei http://www.sciencedirect.com/science/article/pii/S2590098623000258 kostenfrei https://doaj.org/toc/2590-0986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2024 100175- |
language |
English |
source |
In Medicine in Drug Discovery 21(2024), Seite 100175- volume:21 year:2024 pages:100175- |
sourceStr |
In Medicine in Drug Discovery 21(2024), Seite 100175- volume:21 year:2024 pages:100175- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Snake venom Bioactive molecules Medical applications Drug discovery Toxin distribution Artificial intelligence Pharmacy and materia medica |
isfreeaccess_bool |
true |
container_title |
Medicine in Drug Discovery |
authorswithroles_txt_mv |
Anas Bedraoui @@aut@@ Montamas Suntravat @@aut@@ Salim El Mejjad @@aut@@ Salwa Enezari @@aut@@ Naoual Oukkache @@aut@@ Elda E. Sanchez @@aut@@ Jacob A. Galan @@aut@@ Rachid El Fatimy @@aut@@ Tariq Daouda @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
1759810975 |
id |
DOAJ101409729 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101409729</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414163016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.medidd.2023.100175</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101409729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RS1-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anas Bedraoui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Snake venom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioactive molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toxin distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Pharmacy and materia medica</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Montamas Suntravat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Salim El Mejjad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Salwa Enezari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naoual Oukkache</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elda E. Sanchez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jacob A. Galan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rachid El Fatimy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tariq Daouda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Medicine in Drug Discovery</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">21(2024), Seite 100175-</subfield><subfield code="w">(DE-627)1759810975</subfield><subfield code="x">25900986</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:100175-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.medidd.2023.100175</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2590098623000258</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2590-0986</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2024</subfield><subfield code="h">100175-</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Anas Bedraoui |
spellingShingle |
Anas Bedraoui misc RS1-441 misc Snake venom misc Bioactive molecules misc Medical applications misc Drug discovery misc Toxin distribution misc Artificial intelligence misc Pharmacy and materia medica Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery |
authorStr |
Anas Bedraoui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1759810975 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RS1-441 |
illustrated |
Not Illustrated |
issn |
25900986 |
topic_title |
RS1-441 Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery Snake venom Bioactive molecules Medical applications Drug discovery Toxin distribution Artificial intelligence |
topic |
misc RS1-441 misc Snake venom misc Bioactive molecules misc Medical applications misc Drug discovery misc Toxin distribution misc Artificial intelligence misc Pharmacy and materia medica |
topic_unstemmed |
misc RS1-441 misc Snake venom misc Bioactive molecules misc Medical applications misc Drug discovery misc Toxin distribution misc Artificial intelligence misc Pharmacy and materia medica |
topic_browse |
misc RS1-441 misc Snake venom misc Bioactive molecules misc Medical applications misc Drug discovery misc Toxin distribution misc Artificial intelligence misc Pharmacy and materia medica |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Medicine in Drug Discovery |
hierarchy_parent_id |
1759810975 |
hierarchy_top_title |
Medicine in Drug Discovery |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1759810975 |
title |
Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery |
ctrlnum |
(DE-627)DOAJ101409729 (DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b |
title_full |
Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery |
author_sort |
Anas Bedraoui |
journal |
Medicine in Drug Discovery |
journalStr |
Medicine in Drug Discovery |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
100175 |
author_browse |
Anas Bedraoui Montamas Suntravat Salim El Mejjad Salwa Enezari Naoual Oukkache Elda E. Sanchez Jacob A. Galan Rachid El Fatimy Tariq Daouda |
container_volume |
21 |
class |
RS1-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Anas Bedraoui |
doi_str_mv |
10.1016/j.medidd.2023.100175 |
author2-role |
verfasserin |
title_sort |
therapeutic potential of snake venom: toxin distribution and opportunities in deep learning for novel drug discovery |
callnumber |
RS1-441 |
title_auth |
Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery |
abstract |
Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. |
abstractGer |
Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. |
abstract_unstemmed |
Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery |
url |
https://doi.org/10.1016/j.medidd.2023.100175 https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b http://www.sciencedirect.com/science/article/pii/S2590098623000258 https://doaj.org/toc/2590-0986 |
remote_bool |
true |
author2 |
Montamas Suntravat Salim El Mejjad Salwa Enezari Naoual Oukkache Elda E. Sanchez Jacob A. Galan Rachid El Fatimy Tariq Daouda |
author2Str |
Montamas Suntravat Salim El Mejjad Salwa Enezari Naoual Oukkache Elda E. Sanchez Jacob A. Galan Rachid El Fatimy Tariq Daouda |
ppnlink |
1759810975 |
callnumber-subject |
RS - Pharmacy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.medidd.2023.100175 |
callnumber-a |
RS1-441 |
up_date |
2024-07-03T20:29:15.138Z |
_version_ |
1803591148003917824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101409729</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414163016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.medidd.2023.100175</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101409729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6e4a495fd9bf475c8402fe756d4e913b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RS1-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anas Bedraoui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Snake venom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioactive molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toxin distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Pharmacy and materia medica</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Montamas Suntravat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Salim El Mejjad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Salwa Enezari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naoual Oukkache</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elda E. Sanchez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jacob A. Galan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rachid El Fatimy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tariq Daouda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Medicine in Drug Discovery</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">21(2024), Seite 100175-</subfield><subfield code="w">(DE-627)1759810975</subfield><subfield code="x">25900986</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:100175-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.medidd.2023.100175</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6e4a495fd9bf475c8402fe756d4e913b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2590098623000258</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2590-0986</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2024</subfield><subfield code="h">100175-</subfield></datafield></record></collection>
|
score |
7.401991 |