A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS
Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TE...
Ausführliche Beschreibung
Autor*in: |
Hugh Roxburgh [verfasserIn] Ryan Ridden-Harper [verfasserIn] Zachary G. Lane [verfasserIn] Armin Rest [verfasserIn] Lancia Hubley [verfasserIn] Rebekah Hounsell [verfasserIn] Qinan Wang [verfasserIn] Sebastian Gomez [verfasserIn] Justin Pierel [verfasserIn] Muryel Guolo [verfasserIn] Sofia Rest [verfasserIn] Sophie von Coelln [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 963(2024), 2, p 89 |
---|---|
Übergeordnetes Werk: |
volume:963 ; year:2024 ; number:2, p 89 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/ad1b59 |
---|
Katalog-ID: |
DOAJ101444974 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ101444974 | ||
003 | DE-627 | ||
005 | 20240414163831.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240414s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/ad1b59 |2 doi | |
035 | |a (DE-627)DOAJ101444974 | ||
035 | |a (DE-599)DOAJfad257831ac349f29f278ed40fe6494c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Hugh Roxburgh |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. | ||
650 | 4 | |a Gamma-ray bursts | |
650 | 4 | |a High energy astrophysics | |
650 | 4 | |a Transient sources | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Ryan Ridden-Harper |e verfasserin |4 aut | |
700 | 0 | |a Zachary G. Lane |e verfasserin |4 aut | |
700 | 0 | |a Armin Rest |e verfasserin |4 aut | |
700 | 0 | |a Lancia Hubley |e verfasserin |4 aut | |
700 | 0 | |a Rebekah Hounsell |e verfasserin |4 aut | |
700 | 0 | |a Qinan Wang |e verfasserin |4 aut | |
700 | 0 | |a Sebastian Gomez |e verfasserin |4 aut | |
700 | 0 | |a Justin Pierel |e verfasserin |4 aut | |
700 | 0 | |a Muryel Guolo |e verfasserin |4 aut | |
700 | 0 | |a Sofia Rest |e verfasserin |4 aut | |
700 | 0 | |a Sophie von Coelln |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 963(2024), 2, p 89 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:963 |g year:2024 |g number:2, p 89 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad1b59 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fad257831ac349f29f278ed40fe6494c |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad1b59 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 963 |j 2024 |e 2, p 89 |
author_variant |
h r hr r r h rrh z g l zgl a r ar l h lh r h rh q w qw s g sg j p jp m g mg s r sr s v c svc |
---|---|
matchkey_str |
article:15384357:2024----::cmrhnienetgtoogmaabrtfeg |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QB |
publishDate |
2024 |
allfields |
10.3847/1538-4357/ad1b59 doi (DE-627)DOAJ101444974 (DE-599)DOAJfad257831ac349f29f278ed40fe6494c DE-627 ger DE-627 rakwb eng QB460-466 Hugh Roxburgh verfasserin aut A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. Gamma-ray bursts High energy astrophysics Transient sources Astrophysics Ryan Ridden-Harper verfasserin aut Zachary G. Lane verfasserin aut Armin Rest verfasserin aut Lancia Hubley verfasserin aut Rebekah Hounsell verfasserin aut Qinan Wang verfasserin aut Sebastian Gomez verfasserin aut Justin Pierel verfasserin aut Muryel Guolo verfasserin aut Sofia Rest verfasserin aut Sophie von Coelln verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 963(2024), 2, p 89 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:963 year:2024 number:2, p 89 https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/article/fad257831ac349f29f278ed40fe6494c kostenfrei https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 963 2024 2, p 89 |
spelling |
10.3847/1538-4357/ad1b59 doi (DE-627)DOAJ101444974 (DE-599)DOAJfad257831ac349f29f278ed40fe6494c DE-627 ger DE-627 rakwb eng QB460-466 Hugh Roxburgh verfasserin aut A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. Gamma-ray bursts High energy astrophysics Transient sources Astrophysics Ryan Ridden-Harper verfasserin aut Zachary G. Lane verfasserin aut Armin Rest verfasserin aut Lancia Hubley verfasserin aut Rebekah Hounsell verfasserin aut Qinan Wang verfasserin aut Sebastian Gomez verfasserin aut Justin Pierel verfasserin aut Muryel Guolo verfasserin aut Sofia Rest verfasserin aut Sophie von Coelln verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 963(2024), 2, p 89 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:963 year:2024 number:2, p 89 https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/article/fad257831ac349f29f278ed40fe6494c kostenfrei https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 963 2024 2, p 89 |
allfields_unstemmed |
10.3847/1538-4357/ad1b59 doi (DE-627)DOAJ101444974 (DE-599)DOAJfad257831ac349f29f278ed40fe6494c DE-627 ger DE-627 rakwb eng QB460-466 Hugh Roxburgh verfasserin aut A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. Gamma-ray bursts High energy astrophysics Transient sources Astrophysics Ryan Ridden-Harper verfasserin aut Zachary G. Lane verfasserin aut Armin Rest verfasserin aut Lancia Hubley verfasserin aut Rebekah Hounsell verfasserin aut Qinan Wang verfasserin aut Sebastian Gomez verfasserin aut Justin Pierel verfasserin aut Muryel Guolo verfasserin aut Sofia Rest verfasserin aut Sophie von Coelln verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 963(2024), 2, p 89 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:963 year:2024 number:2, p 89 https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/article/fad257831ac349f29f278ed40fe6494c kostenfrei https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 963 2024 2, p 89 |
allfieldsGer |
10.3847/1538-4357/ad1b59 doi (DE-627)DOAJ101444974 (DE-599)DOAJfad257831ac349f29f278ed40fe6494c DE-627 ger DE-627 rakwb eng QB460-466 Hugh Roxburgh verfasserin aut A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. Gamma-ray bursts High energy astrophysics Transient sources Astrophysics Ryan Ridden-Harper verfasserin aut Zachary G. Lane verfasserin aut Armin Rest verfasserin aut Lancia Hubley verfasserin aut Rebekah Hounsell verfasserin aut Qinan Wang verfasserin aut Sebastian Gomez verfasserin aut Justin Pierel verfasserin aut Muryel Guolo verfasserin aut Sofia Rest verfasserin aut Sophie von Coelln verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 963(2024), 2, p 89 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:963 year:2024 number:2, p 89 https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/article/fad257831ac349f29f278ed40fe6494c kostenfrei https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 963 2024 2, p 89 |
allfieldsSound |
10.3847/1538-4357/ad1b59 doi (DE-627)DOAJ101444974 (DE-599)DOAJfad257831ac349f29f278ed40fe6494c DE-627 ger DE-627 rakwb eng QB460-466 Hugh Roxburgh verfasserin aut A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. Gamma-ray bursts High energy astrophysics Transient sources Astrophysics Ryan Ridden-Harper verfasserin aut Zachary G. Lane verfasserin aut Armin Rest verfasserin aut Lancia Hubley verfasserin aut Rebekah Hounsell verfasserin aut Qinan Wang verfasserin aut Sebastian Gomez verfasserin aut Justin Pierel verfasserin aut Muryel Guolo verfasserin aut Sofia Rest verfasserin aut Sophie von Coelln verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 963(2024), 2, p 89 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:963 year:2024 number:2, p 89 https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/article/fad257831ac349f29f278ed40fe6494c kostenfrei https://doi.org/10.3847/1538-4357/ad1b59 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 963 2024 2, p 89 |
language |
English |
source |
In The Astrophysical Journal 963(2024), 2, p 89 volume:963 year:2024 number:2, p 89 |
sourceStr |
In The Astrophysical Journal 963(2024), 2, p 89 volume:963 year:2024 number:2, p 89 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gamma-ray bursts High energy astrophysics Transient sources Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Hugh Roxburgh @@aut@@ Ryan Ridden-Harper @@aut@@ Zachary G. Lane @@aut@@ Armin Rest @@aut@@ Lancia Hubley @@aut@@ Rebekah Hounsell @@aut@@ Qinan Wang @@aut@@ Sebastian Gomez @@aut@@ Justin Pierel @@aut@@ Muryel Guolo @@aut@@ Sofia Rest @@aut@@ Sophie von Coelln @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ101444974 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101444974</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414163831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad1b59</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101444974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfad257831ac349f29f278ed40fe6494c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hugh Roxburgh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gamma-ray bursts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High energy astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryan Ridden-Harper</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zachary G. Lane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Rest</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lancia Hubley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebekah Hounsell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qinan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Gomez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Justin Pierel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muryel Guolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sofia Rest</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sophie von Coelln</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">963(2024), 2, p 89</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:963</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 89</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad1b59</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fad257831ac349f29f278ed40fe6494c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad1b59</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">963</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 89</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Hugh Roxburgh |
spellingShingle |
Hugh Roxburgh misc QB460-466 misc Gamma-ray bursts misc High energy astrophysics misc Transient sources misc Astrophysics A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS |
authorStr |
Hugh Roxburgh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS Gamma-ray bursts High energy astrophysics Transient sources |
topic |
misc QB460-466 misc Gamma-ray bursts misc High energy astrophysics misc Transient sources misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Gamma-ray bursts misc High energy astrophysics misc Transient sources misc Astrophysics |
topic_browse |
misc QB460-466 misc Gamma-ray bursts misc High energy astrophysics misc Transient sources misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS |
ctrlnum |
(DE-627)DOAJ101444974 (DE-599)DOAJfad257831ac349f29f278ed40fe6494c |
title_full |
A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS |
author_sort |
Hugh Roxburgh |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Hugh Roxburgh Ryan Ridden-Harper Zachary G. Lane Armin Rest Lancia Hubley Rebekah Hounsell Qinan Wang Sebastian Gomez Justin Pierel Muryel Guolo Sofia Rest Sophie von Coelln |
container_volume |
963 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Hugh Roxburgh |
doi_str_mv |
10.3847/1538-4357/ad1b59 |
author2-role |
verfasserin |
title_sort |
comprehensive investigation of gamma-ray burst afterglows detected by tess |
callnumber |
QB460-466 |
title_auth |
A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS |
abstract |
Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. |
abstractGer |
Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. |
abstract_unstemmed |
Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 89 |
title_short |
A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS |
url |
https://doi.org/10.3847/1538-4357/ad1b59 https://doaj.org/article/fad257831ac349f29f278ed40fe6494c https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Ryan Ridden-Harper Zachary G. Lane Armin Rest Lancia Hubley Rebekah Hounsell Qinan Wang Sebastian Gomez Justin Pierel Muryel Guolo Sofia Rest Sophie von Coelln |
author2Str |
Ryan Ridden-Harper Zachary G. Lane Armin Rest Lancia Hubley Rebekah Hounsell Qinan Wang Sebastian Gomez Justin Pierel Muryel Guolo Sofia Rest Sophie von Coelln |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/ad1b59 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T20:40:16.419Z |
_version_ |
1803591841397866496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ101444974</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414163831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240414s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad1b59</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ101444974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfad257831ac349f29f278ed40fe6494c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hugh Roxburgh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Comprehensive Investigation of Gamma-Ray Burst Afterglows Detected by TESS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gamma-ray bursts produce afterglows that can be observed across the electromagnetic spectrum and can provide insight into the nature of their progenitors. While most telescopes that observe afterglows are designed to rapidly react to trigger information, the Transiting Exoplanet Survey Satellite (TESS) continuously monitors sections of the sky at cadences between 30 minutes and 200 s. This provides TESS with the capability of serendipitously observing the optical afterglow of GRBs. We conduct the first extensive search for afterglows of known GRBs in archival TESS data reduced with the TESSreduce package, and detect 11 candidate signals that are temporally coincident with reported burst times. We classify three of these as high-likelihood GRB afterglows previously unknown to have been detected by TESS, one of which has no other afterglow detection reported on the Gamma-ray Coordinates Network. We classify five candidates as tentative and the remainder as unlikely. Using the afterglowpy package, we model each of the candidate light curves with a Gaussian and a top-hat model to estimate burst parameters; we find that a mean time delay of 740 ± 690 s between the explosion and afterglow onset is required to perform these fits. The high cadence and large field of view make TESS a powerful instrument for localising GRBs, with the potential to observe afterglows in cases when no other backup photometry is possible, and at timescales previously unreachable by optical telescopes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gamma-ray bursts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High energy astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryan Ridden-Harper</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zachary G. Lane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Rest</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lancia Hubley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebekah Hounsell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qinan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Gomez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Justin Pierel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muryel Guolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sofia Rest</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sophie von Coelln</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">963(2024), 2, p 89</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:963</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 89</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad1b59</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fad257831ac349f29f278ed40fe6494c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad1b59</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">963</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 89</subfield></datafield></record></collection>
|
score |
7.399131 |