Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage
The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contra...
Ausführliche Beschreibung
Autor*in: |
Zhang, Wenliang [verfasserIn] Guo, Rui [verfasserIn] Dang, Liqin [verfasserIn] Sun, Jie [verfasserIn] Liu, Zonghuai [verfasserIn] Lei, Zhibin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of power sources - New York, NY [u.a.] : Elsevier, 1976, 507 |
---|---|
Übergeordnetes Werk: |
volume:507 |
DOI / URN: |
10.1016/j.jpowsour.2021.230303 |
---|
Katalog-ID: |
ELV000017809 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000017809 | ||
003 | DE-627 | ||
005 | 20230524124612.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230426s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpowsour.2021.230303 |2 doi | |
035 | |a (DE-627)ELV000017809 | ||
035 | |a (ELSEVIER)S0378-7753(21)00818-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 52.57 |2 bkl | ||
084 | |a 53.36 |2 bkl | ||
100 | 1 | |a Zhang, Wenliang |e verfasserin |0 (orcid)0000-0003-1083-3826 |4 aut | |
245 | 1 | 0 | |a Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. | ||
650 | 4 | |a Hollow carbon fiber | |
650 | 4 | |a N-doped CNTs | |
650 | 4 | |a Interface engineering | |
650 | 4 | |a Flexible electrodes | |
650 | 4 | |a Textile-based supercapacitor | |
700 | 1 | |a Guo, Rui |e verfasserin |4 aut | |
700 | 1 | |a Dang, Liqin |e verfasserin |4 aut | |
700 | 1 | |a Sun, Jie |e verfasserin |4 aut | |
700 | 1 | |a Liu, Zonghuai |e verfasserin |4 aut | |
700 | 1 | |a Lei, Zhibin |e verfasserin |0 (orcid)0000-0002-6537-9889 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of power sources |d New York, NY [u.a.] : Elsevier, 1976 |g 507 |h Online-Ressource |w (DE-627)302718923 |w (DE-600)1491915-1 |w (DE-576)259483958 |x 1873-2755 |7 nnns |
773 | 1 | 8 | |g volume:507 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.57 |j Energiespeicherung |
936 | b | k | |a 53.36 |j Energiedirektumwandler |j elektrische Energiespeicher |
951 | |a AR | ||
952 | |d 507 |
author_variant |
w z wz r g rg l d ld j s js z l zl z l zl |
---|---|
matchkey_str |
article:18732755:2021----::otnarceiehbicrontokihdpdabnaouegonetclyslxbeutfntoaeet |
hierarchy_sort_str |
2021 |
bklnumber |
52.57 53.36 |
publishDate |
2021 |
allfields |
10.1016/j.jpowsour.2021.230303 doi (DE-627)ELV000017809 (ELSEVIER)S0378-7753(21)00818-1 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Zhang, Wenliang verfasserin (orcid)0000-0003-1083-3826 aut Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. Hollow carbon fiber N-doped CNTs Interface engineering Flexible electrodes Textile-based supercapacitor Guo, Rui verfasserin aut Dang, Liqin verfasserin aut Sun, Jie verfasserin aut Liu, Zonghuai verfasserin aut Lei, Zhibin verfasserin (orcid)0000-0002-6537-9889 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 507 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:507 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 507 |
spelling |
10.1016/j.jpowsour.2021.230303 doi (DE-627)ELV000017809 (ELSEVIER)S0378-7753(21)00818-1 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Zhang, Wenliang verfasserin (orcid)0000-0003-1083-3826 aut Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. Hollow carbon fiber N-doped CNTs Interface engineering Flexible electrodes Textile-based supercapacitor Guo, Rui verfasserin aut Dang, Liqin verfasserin aut Sun, Jie verfasserin aut Liu, Zonghuai verfasserin aut Lei, Zhibin verfasserin (orcid)0000-0002-6537-9889 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 507 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:507 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 507 |
allfields_unstemmed |
10.1016/j.jpowsour.2021.230303 doi (DE-627)ELV000017809 (ELSEVIER)S0378-7753(21)00818-1 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Zhang, Wenliang verfasserin (orcid)0000-0003-1083-3826 aut Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. Hollow carbon fiber N-doped CNTs Interface engineering Flexible electrodes Textile-based supercapacitor Guo, Rui verfasserin aut Dang, Liqin verfasserin aut Sun, Jie verfasserin aut Liu, Zonghuai verfasserin aut Lei, Zhibin verfasserin (orcid)0000-0002-6537-9889 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 507 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:507 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 507 |
allfieldsGer |
10.1016/j.jpowsour.2021.230303 doi (DE-627)ELV000017809 (ELSEVIER)S0378-7753(21)00818-1 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Zhang, Wenliang verfasserin (orcid)0000-0003-1083-3826 aut Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. Hollow carbon fiber N-doped CNTs Interface engineering Flexible electrodes Textile-based supercapacitor Guo, Rui verfasserin aut Dang, Liqin verfasserin aut Sun, Jie verfasserin aut Liu, Zonghuai verfasserin aut Lei, Zhibin verfasserin (orcid)0000-0002-6537-9889 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 507 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:507 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 507 |
allfieldsSound |
10.1016/j.jpowsour.2021.230303 doi (DE-627)ELV000017809 (ELSEVIER)S0378-7753(21)00818-1 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Zhang, Wenliang verfasserin (orcid)0000-0003-1083-3826 aut Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. Hollow carbon fiber N-doped CNTs Interface engineering Flexible electrodes Textile-based supercapacitor Guo, Rui verfasserin aut Dang, Liqin verfasserin aut Sun, Jie verfasserin aut Liu, Zonghuai verfasserin aut Lei, Zhibin verfasserin (orcid)0000-0002-6537-9889 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 507 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:507 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 507 |
language |
English |
source |
Enthalten in Journal of power sources 507 volume:507 |
sourceStr |
Enthalten in Journal of power sources 507 volume:507 |
format_phy_str_mv |
Article |
bklname |
Energiespeicherung Energiedirektumwandler elektrische Energiespeicher |
institution |
findex.gbv.de |
topic_facet |
Hollow carbon fiber N-doped CNTs Interface engineering Flexible electrodes Textile-based supercapacitor |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of power sources |
authorswithroles_txt_mv |
Zhang, Wenliang @@aut@@ Guo, Rui @@aut@@ Dang, Liqin @@aut@@ Sun, Jie @@aut@@ Liu, Zonghuai @@aut@@ Lei, Zhibin @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
302718923 |
dewey-sort |
3620 |
id |
ELV000017809 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000017809</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124612.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230426s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2021.230303</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000017809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(21)00818-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Wenliang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1083-3826</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hollow carbon fiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">N-doped CNTs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interface engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Textile-based supercapacitor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dang, Liqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zonghuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lei, Zhibin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6537-9889</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of power sources</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">507</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718923</subfield><subfield code="w">(DE-600)1491915-1</subfield><subfield code="w">(DE-576)259483958</subfield><subfield code="x">1873-2755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">507</subfield></datafield></record></collection>
|
author |
Zhang, Wenliang |
spellingShingle |
Zhang, Wenliang ddc 620 bkl 52.57 bkl 53.36 misc Hollow carbon fiber misc N-doped CNTs misc Interface engineering misc Flexible electrodes misc Textile-based supercapacitor Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage |
authorStr |
Zhang, Wenliang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302718923 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2755 |
topic_title |
620 DE-600 52.57 bkl 53.36 bkl Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage Hollow carbon fiber N-doped CNTs Interface engineering Flexible electrodes Textile-based supercapacitor |
topic |
ddc 620 bkl 52.57 bkl 53.36 misc Hollow carbon fiber misc N-doped CNTs misc Interface engineering misc Flexible electrodes misc Textile-based supercapacitor |
topic_unstemmed |
ddc 620 bkl 52.57 bkl 53.36 misc Hollow carbon fiber misc N-doped CNTs misc Interface engineering misc Flexible electrodes misc Textile-based supercapacitor |
topic_browse |
ddc 620 bkl 52.57 bkl 53.36 misc Hollow carbon fiber misc N-doped CNTs misc Interface engineering misc Flexible electrodes misc Textile-based supercapacitor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of power sources |
hierarchy_parent_id |
302718923 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of power sources |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 |
title |
Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage |
ctrlnum |
(DE-627)ELV000017809 (ELSEVIER)S0378-7753(21)00818-1 |
title_full |
Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage |
author_sort |
Zhang, Wenliang |
journal |
Journal of power sources |
journalStr |
Journal of power sources |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Wenliang Guo, Rui Dang, Liqin Sun, Jie Liu, Zonghuai Lei, Zhibin |
container_volume |
507 |
class |
620 DE-600 52.57 bkl 53.36 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Wenliang |
doi_str_mv |
10.1016/j.jpowsour.2021.230303 |
normlink |
(ORCID)0000-0003-1083-3826 (ORCID)0000-0002-6537-9889 |
normlink_prefix_str_mv |
(orcid)0000-0003-1083-3826 (orcid)0000-0002-6537-9889 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
cotton fabric-derived hybrid carbon network with n-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage |
title_auth |
Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage |
abstract |
The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. |
abstractGer |
The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. |
abstract_unstemmed |
The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage |
remote_bool |
true |
author2 |
Guo, Rui Dang, Liqin Sun, Jie Liu, Zonghuai Lei, Zhibin |
author2Str |
Guo, Rui Dang, Liqin Sun, Jie Liu, Zonghuai Lei, Zhibin |
ppnlink |
302718923 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jpowsour.2021.230303 |
up_date |
2024-07-06T16:35:36.113Z |
_version_ |
1803848238879473664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000017809</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124612.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230426s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2021.230303</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000017809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(21)00818-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Wenliang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1083-3826</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The emerging electronic textiles (e-textiles) with various functionalities urgently demand the flexible textile-based supercapacitors (TSCs) as reliable power sources. The textiles used for energy storage generally serve as supports/current-collectors and thus hardly contribute capacitance in contrast to electrochemically active materials. Herein, ultralong N-doped carbon nanotubes (NCNTs) are grown directly on the hollow textile carbon (TC) fibers to yield highly conductive TC-NCNTs hybrid network (20.4 S cm−1) through a facile one-pot heating strategy, allowing rapid ion and electron kinetics along this 3D interlaced backbone. Electrochemical oxidation of TC-NCNTs for 20 min yields the EATC-NCNTs-20 electrode with an enhanced areal capacitance of 1279 mF cm−2 due to the introduction of tremendous oxygen functional groups. Meanwhile, electrodeposition of CoS nanosheets on TC-NCNTs offers large accessible surface area for pseudocapacitive redox reactions, leading the TC-NCNTsCoS-8 electrode to achieve an areal capacitance of 2240 mF cm−2 at 5 mA cm−2, together with a remarkable rate performance (92.6 % capacitance retention at 100 mA cm−2 with CoS mass loading of 10.8 mg cm−2). A flexible asymmetric supercapacitor fabricated with the two electrodes delivers an energy density of 2.30 mWh cm−3 at 24.27 mW cm−3. These results could promote the development of advanced textile-based electrochemical energy storage devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hollow carbon fiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">N-doped CNTs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interface engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Textile-based supercapacitor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dang, Liqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zonghuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lei, Zhibin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6537-9889</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of power sources</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">507</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718923</subfield><subfield code="w">(DE-600)1491915-1</subfield><subfield code="w">(DE-576)259483958</subfield><subfield code="x">1873-2755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">507</subfield></datafield></record></collection>
|
score |
7.400937 |