Constructing dimensional gradient structure of Na
Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is...
Ausführliche Beschreibung
Autor*in: |
Sun, Shiqi [verfasserIn] Chen, Yanjun [verfasserIn] Cheng, Jun [verfasserIn] Tian, Zeyi [verfasserIn] Wang, Chao [verfasserIn] Wu, Guangping [verfasserIn] Liu, Changcheng [verfasserIn] Wang, Yanzhong [verfasserIn] Guo, Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 420 |
---|---|
Übergeordnetes Werk: |
volume:420 |
DOI / URN: |
10.1016/j.cej.2021.130453 |
---|
Katalog-ID: |
ELV00001902X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00001902X | ||
003 | DE-627 | ||
005 | 20230524131730.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230426s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2021.130453 |2 doi | |
035 | |a (DE-627)ELV00001902X | ||
035 | |a (ELSEVIER)S1385-8947(21)02039-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 660.05 |q DE-101 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Sun, Shiqi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Constructing dimensional gradient structure of Na |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. | ||
650 | 4 | |a W-substitution | |
650 | 4 | |a WC | |
650 | 4 | |a Na | |
650 | 4 | |a Carbon nanotubes | |
650 | 4 | |a Na-ion batteries | |
700 | 1 | |a Chen, Yanjun |e verfasserin |4 aut | |
700 | 1 | |a Cheng, Jun |e verfasserin |4 aut | |
700 | 1 | |a Tian, Zeyi |e verfasserin |4 aut | |
700 | 1 | |a Wang, Chao |e verfasserin |4 aut | |
700 | 1 | |a Wu, Guangping |e verfasserin |4 aut | |
700 | 1 | |a Liu, Changcheng |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yanzhong |e verfasserin |4 aut | |
700 | 1 | |a Guo, Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 420 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:420 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |
951 | |a AR | ||
952 | |d 420 | ||
953 | |2 045F |a 660.05 |
author_variant |
s s ss y c yc j c jc z t zt c w cw g w gw c l cl y w yw l g lg |
---|---|
matchkey_str |
article:18733212:2021----::osrcigiesoagains |
hierarchy_sort_str |
2021 |
bklnumber |
58.10 |
publishDate |
2021 |
allfields |
10.1016/j.cej.2021.130453 doi (DE-627)ELV00001902X (ELSEVIER)S1385-8947(21)02039-8 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Sun, Shiqi verfasserin aut Constructing dimensional gradient structure of Na 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. W-substitution WC Na Carbon nanotubes Na-ion batteries Chen, Yanjun verfasserin aut Cheng, Jun verfasserin aut Tian, Zeyi verfasserin aut Wang, Chao verfasserin aut Wu, Guangping verfasserin aut Liu, Changcheng verfasserin aut Wang, Yanzhong verfasserin aut Guo, Li verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 420 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 420 045F 660.05 |
spelling |
10.1016/j.cej.2021.130453 doi (DE-627)ELV00001902X (ELSEVIER)S1385-8947(21)02039-8 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Sun, Shiqi verfasserin aut Constructing dimensional gradient structure of Na 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. W-substitution WC Na Carbon nanotubes Na-ion batteries Chen, Yanjun verfasserin aut Cheng, Jun verfasserin aut Tian, Zeyi verfasserin aut Wang, Chao verfasserin aut Wu, Guangping verfasserin aut Liu, Changcheng verfasserin aut Wang, Yanzhong verfasserin aut Guo, Li verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 420 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 420 045F 660.05 |
allfields_unstemmed |
10.1016/j.cej.2021.130453 doi (DE-627)ELV00001902X (ELSEVIER)S1385-8947(21)02039-8 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Sun, Shiqi verfasserin aut Constructing dimensional gradient structure of Na 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. W-substitution WC Na Carbon nanotubes Na-ion batteries Chen, Yanjun verfasserin aut Cheng, Jun verfasserin aut Tian, Zeyi verfasserin aut Wang, Chao verfasserin aut Wu, Guangping verfasserin aut Liu, Changcheng verfasserin aut Wang, Yanzhong verfasserin aut Guo, Li verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 420 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 420 045F 660.05 |
allfieldsGer |
10.1016/j.cej.2021.130453 doi (DE-627)ELV00001902X (ELSEVIER)S1385-8947(21)02039-8 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Sun, Shiqi verfasserin aut Constructing dimensional gradient structure of Na 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. W-substitution WC Na Carbon nanotubes Na-ion batteries Chen, Yanjun verfasserin aut Cheng, Jun verfasserin aut Tian, Zeyi verfasserin aut Wang, Chao verfasserin aut Wu, Guangping verfasserin aut Liu, Changcheng verfasserin aut Wang, Yanzhong verfasserin aut Guo, Li verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 420 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 420 045F 660.05 |
allfieldsSound |
10.1016/j.cej.2021.130453 doi (DE-627)ELV00001902X (ELSEVIER)S1385-8947(21)02039-8 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Sun, Shiqi verfasserin aut Constructing dimensional gradient structure of Na 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. W-substitution WC Na Carbon nanotubes Na-ion batteries Chen, Yanjun verfasserin aut Cheng, Jun verfasserin aut Tian, Zeyi verfasserin aut Wang, Chao verfasserin aut Wu, Guangping verfasserin aut Liu, Changcheng verfasserin aut Wang, Yanzhong verfasserin aut Guo, Li verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 420 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 420 045F 660.05 |
language |
English |
source |
Enthalten in The chemical engineering journal 420 volume:420 |
sourceStr |
Enthalten in The chemical engineering journal 420 volume:420 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
W-substitution WC Na Carbon nanotubes Na-ion batteries |
dewey-raw |
660.05 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Sun, Shiqi @@aut@@ Chen, Yanjun @@aut@@ Cheng, Jun @@aut@@ Tian, Zeyi @@aut@@ Wang, Chao @@aut@@ Wu, Guangping @@aut@@ Liu, Changcheng @@aut@@ Wang, Yanzhong @@aut@@ Guo, Li @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660.05 |
id |
ELV00001902X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00001902X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230426s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2021.130453</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00001902X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(21)02039-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Shiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constructing dimensional gradient structure of Na</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">W-substitution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Na</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Na-ion batteries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yanjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Zeyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Guangping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Changcheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yanzhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">420</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:420</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">420</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
author |
Sun, Shiqi |
spellingShingle |
Sun, Shiqi ddc 660.05 ddc 660 bkl 58.10 misc W-substitution misc WC misc Na misc Carbon nanotubes misc Na-ion batteries Constructing dimensional gradient structure of Na |
authorStr |
Sun, Shiqi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Constructing dimensional gradient structure of Na W-substitution WC Na Carbon nanotubes Na-ion batteries |
topic |
ddc 660.05 ddc 660 bkl 58.10 misc W-substitution misc WC misc Na misc Carbon nanotubes misc Na-ion batteries |
topic_unstemmed |
ddc 660.05 ddc 660 bkl 58.10 misc W-substitution misc WC misc Na misc Carbon nanotubes misc Na-ion batteries |
topic_browse |
ddc 660.05 ddc 660 bkl 58.10 misc W-substitution misc WC misc Na misc Carbon nanotubes misc Na-ion batteries |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Constructing dimensional gradient structure of Na |
ctrlnum |
(DE-627)ELV00001902X (ELSEVIER)S1385-8947(21)02039-8 |
title_full |
Constructing dimensional gradient structure of Na |
author_sort |
Sun, Shiqi |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Sun, Shiqi Chen, Yanjun Cheng, Jun Tian, Zeyi Wang, Chao Wu, Guangping Liu, Changcheng Wang, Yanzhong Guo, Li |
container_volume |
420 |
class |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Shiqi |
doi_str_mv |
10.1016/j.cej.2021.130453 |
dewey-full |
660.05 660 |
author2-role |
verfasserin |
title_sort |
constructing dimensional gradient structure of na |
title_auth |
Constructing dimensional gradient structure of Na |
abstract |
Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. |
abstractGer |
Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. |
abstract_unstemmed |
Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Constructing dimensional gradient structure of Na |
remote_bool |
true |
author2 |
Chen, Yanjun Cheng, Jun Tian, Zeyi Wang, Chao Wu, Guangping Liu, Changcheng Wang, Yanzhong Guo, Li |
author2Str |
Chen, Yanjun Cheng, Jun Tian, Zeyi Wang, Chao Wu, Guangping Liu, Changcheng Wang, Yanzhong Guo, Li |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2021.130453 |
up_date |
2024-07-06T16:35:50.184Z |
_version_ |
1803848253639229440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00001902X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230426s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2021.130453</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00001902X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(21)02039-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Shiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constructing dimensional gradient structure of Na</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Na3V2(PO4)3 (NVP) has gained enormous attentions due to the high capacity and voltage platform. Nevertheless, poor intrinsic electronic conductivities severely restrict the further development. Herein, a feasible strategy to construct unique dimensional gradient structure of the wolfram doped NVP is proposed via a facile sol–gel method. The introduction of W6+ with the smaller ionic radius parallelized with local V3+ ions could stabilize the open NASICON structure of NVP and generate vast of beneficial holes to accelerate the electronic transportation. Notably, the wolfram can combine with the superfluous carbon layer and form the new conductive WC phase to further promote the electronic conductivity. Meanwhile, the coated carbon layers and enwrapped CNTs construct an effective conductive framework for accelerated electronic migration. The twining CNTs promote to inhibit the growth of the sintered grains, reducing the particle size to provide shortened pathway for the migration of Na+. Distinctively, the modified Na2.97V2.99W0.019(PO4)3/CCNTs (W0.01-NVP) composite delivers a superior electrochemical performance. Significantly, it can submit a high reversible capability of 112.5 mAh g−1 at 5C with retaining 86% initial capacity over 500 cycles. As for a super high rate of 50C, it reveals an incredible capacity of 92.6 mAh g−1 and remains 84.5 mAh g−1 over 400 cycles, corresponding to a high retention of 91.30%. The superior electrochemical performance is derived from the enhanced crystal structure resulted from wolfram substitution and the beneficial dimensional conductive system consisting of new WC phase, coated carbon layers and enwrapped CNTs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">W-substitution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Na</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Na-ion batteries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yanjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Zeyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Guangping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Changcheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yanzhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">420</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:420</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">420</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
score |
7.401886 |