Degradation of concentrating solar thermal reflectors in acid rain atmospheres
Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies...
Ausführliche Beschreibung
Autor*in: |
García-Segura, A. [verfasserIn] Fernández-García, A. [verfasserIn] Ariza, M.J. [verfasserIn] Sutter, F. [verfasserIn] Valenzuela, L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solar energy materials & solar cells - Amsterdam [u.a.] : NH, Elsevier, 1992, 186, Seite 92-104 |
---|---|
Übergeordnetes Werk: |
volume:186 ; pages:92-104 |
DOI / URN: |
10.1016/j.solmat.2018.06.032 |
---|
Katalog-ID: |
ELV000128902 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000128902 | ||
003 | DE-627 | ||
005 | 20230524152034.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.solmat.2018.06.032 |2 doi | |
035 | |a (DE-627)ELV000128902 | ||
035 | |a (ELSEVIER)S0927-0248(18)30320-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 53.36 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.56 |2 bkl | ||
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a García-Segura, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Degradation of concentrating solar thermal reflectors in acid rain atmospheres |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. | ||
650 | 4 | |a Concentrating solar technology | |
650 | 4 | |a Solar reflector | |
650 | 4 | |a Accelerated aging test | |
650 | 4 | |a Acid rain | |
650 | 4 | |a Service lifetime prediction | |
700 | 1 | |a Fernández-García, A. |e verfasserin |4 aut | |
700 | 1 | |a Ariza, M.J. |e verfasserin |4 aut | |
700 | 1 | |a Sutter, F. |e verfasserin |4 aut | |
700 | 1 | |a Valenzuela, L. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Solar energy materials & solar cells |d Amsterdam [u.a.] : NH, Elsevier, 1992 |g 186, Seite 92-104 |h Online-Ressource |w (DE-627)320504654 |w (DE-600)2012677-3 |w (DE-576)098474170 |7 nnns |
773 | 1 | 8 | |g volume:186 |g pages:92-104 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 53.36 |j Energiedirektumwandler |j elektrische Energiespeicher |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
936 | b | k | |a 50.70 |j Energie: Allgemeines |
951 | |a AR | ||
952 | |d 186 |h 92-104 |
author_variant |
a g s ags a f g afg m a ma f s fs l v lv |
---|---|
matchkey_str |
garcaseguraafernndezgarcaaarizamjsutterf:2018----:erdtoocnetaigoatemlelcosn |
hierarchy_sort_str |
2018 |
bklnumber |
53.36 52.52 52.56 50.70 |
publishDate |
2018 |
allfields |
10.1016/j.solmat.2018.06.032 doi (DE-627)ELV000128902 (ELSEVIER)S0927-0248(18)30320-9 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl García-Segura, A. verfasserin aut Degradation of concentrating solar thermal reflectors in acid rain atmospheres 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. Concentrating solar technology Solar reflector Accelerated aging test Acid rain Service lifetime prediction Fernández-García, A. verfasserin aut Ariza, M.J. verfasserin aut Sutter, F. verfasserin aut Valenzuela, L. verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 186, Seite 92-104 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:186 pages:92-104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 186 92-104 |
spelling |
10.1016/j.solmat.2018.06.032 doi (DE-627)ELV000128902 (ELSEVIER)S0927-0248(18)30320-9 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl García-Segura, A. verfasserin aut Degradation of concentrating solar thermal reflectors in acid rain atmospheres 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. Concentrating solar technology Solar reflector Accelerated aging test Acid rain Service lifetime prediction Fernández-García, A. verfasserin aut Ariza, M.J. verfasserin aut Sutter, F. verfasserin aut Valenzuela, L. verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 186, Seite 92-104 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:186 pages:92-104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 186 92-104 |
allfields_unstemmed |
10.1016/j.solmat.2018.06.032 doi (DE-627)ELV000128902 (ELSEVIER)S0927-0248(18)30320-9 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl García-Segura, A. verfasserin aut Degradation of concentrating solar thermal reflectors in acid rain atmospheres 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. Concentrating solar technology Solar reflector Accelerated aging test Acid rain Service lifetime prediction Fernández-García, A. verfasserin aut Ariza, M.J. verfasserin aut Sutter, F. verfasserin aut Valenzuela, L. verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 186, Seite 92-104 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:186 pages:92-104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 186 92-104 |
allfieldsGer |
10.1016/j.solmat.2018.06.032 doi (DE-627)ELV000128902 (ELSEVIER)S0927-0248(18)30320-9 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl García-Segura, A. verfasserin aut Degradation of concentrating solar thermal reflectors in acid rain atmospheres 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. Concentrating solar technology Solar reflector Accelerated aging test Acid rain Service lifetime prediction Fernández-García, A. verfasserin aut Ariza, M.J. verfasserin aut Sutter, F. verfasserin aut Valenzuela, L. verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 186, Seite 92-104 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:186 pages:92-104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 186 92-104 |
allfieldsSound |
10.1016/j.solmat.2018.06.032 doi (DE-627)ELV000128902 (ELSEVIER)S0927-0248(18)30320-9 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl García-Segura, A. verfasserin aut Degradation of concentrating solar thermal reflectors in acid rain atmospheres 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. Concentrating solar technology Solar reflector Accelerated aging test Acid rain Service lifetime prediction Fernández-García, A. verfasserin aut Ariza, M.J. verfasserin aut Sutter, F. verfasserin aut Valenzuela, L. verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 186, Seite 92-104 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:186 pages:92-104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 186 92-104 |
language |
English |
source |
Enthalten in Solar energy materials & solar cells 186, Seite 92-104 volume:186 pages:92-104 |
sourceStr |
Enthalten in Solar energy materials & solar cells 186, Seite 92-104 volume:186 pages:92-104 |
format_phy_str_mv |
Article |
bklname |
Energiedirektumwandler elektrische Energiespeicher Thermische Energieerzeugung Wärmetechnik Regenerative Energieformen alternative Energieformen Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Concentrating solar technology Solar reflector Accelerated aging test Acid rain Service lifetime prediction |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solar energy materials & solar cells |
authorswithroles_txt_mv |
García-Segura, A. @@aut@@ Fernández-García, A. @@aut@@ Ariza, M.J. @@aut@@ Sutter, F. @@aut@@ Valenzuela, L. @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320504654 |
dewey-sort |
3530 |
id |
ELV000128902 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000128902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152034.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solmat.2018.06.032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000128902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-0248(18)30320-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">García-Segura, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degradation of concentrating solar thermal reflectors in acid rain atmospheres</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concentrating solar technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar reflector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerated aging test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acid rain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Service lifetime prediction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernández-García, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ariza, M.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sutter, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valenzuela, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy materials & solar cells</subfield><subfield code="d">Amsterdam [u.a.] : NH, Elsevier, 1992</subfield><subfield code="g">186, Seite 92-104</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504654</subfield><subfield code="w">(DE-600)2012677-3</subfield><subfield code="w">(DE-576)098474170</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:186</subfield><subfield code="g">pages:92-104</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">186</subfield><subfield code="h">92-104</subfield></datafield></record></collection>
|
author |
García-Segura, A. |
spellingShingle |
García-Segura, A. ddc 530 bkl 53.36 bkl 52.52 bkl 52.56 bkl 50.70 misc Concentrating solar technology misc Solar reflector misc Accelerated aging test misc Acid rain misc Service lifetime prediction Degradation of concentrating solar thermal reflectors in acid rain atmospheres |
authorStr |
García-Segura, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504654 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl Degradation of concentrating solar thermal reflectors in acid rain atmospheres Concentrating solar technology Solar reflector Accelerated aging test Acid rain Service lifetime prediction |
topic |
ddc 530 bkl 53.36 bkl 52.52 bkl 52.56 bkl 50.70 misc Concentrating solar technology misc Solar reflector misc Accelerated aging test misc Acid rain misc Service lifetime prediction |
topic_unstemmed |
ddc 530 bkl 53.36 bkl 52.52 bkl 52.56 bkl 50.70 misc Concentrating solar technology misc Solar reflector misc Accelerated aging test misc Acid rain misc Service lifetime prediction |
topic_browse |
ddc 530 bkl 53.36 bkl 52.52 bkl 52.56 bkl 50.70 misc Concentrating solar technology misc Solar reflector misc Accelerated aging test misc Acid rain misc Service lifetime prediction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solar energy materials & solar cells |
hierarchy_parent_id |
320504654 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Solar energy materials & solar cells |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 |
title |
Degradation of concentrating solar thermal reflectors in acid rain atmospheres |
ctrlnum |
(DE-627)ELV000128902 (ELSEVIER)S0927-0248(18)30320-9 |
title_full |
Degradation of concentrating solar thermal reflectors in acid rain atmospheres |
author_sort |
García-Segura, A. |
journal |
Solar energy materials & solar cells |
journalStr |
Solar energy materials & solar cells |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
92 |
author_browse |
García-Segura, A. Fernández-García, A. Ariza, M.J. Sutter, F. Valenzuela, L. |
container_volume |
186 |
class |
530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
García-Segura, A. |
doi_str_mv |
10.1016/j.solmat.2018.06.032 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
degradation of concentrating solar thermal reflectors in acid rain atmospheres |
title_auth |
Degradation of concentrating solar thermal reflectors in acid rain atmospheres |
abstract |
Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. |
abstractGer |
Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. |
abstract_unstemmed |
Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Degradation of concentrating solar thermal reflectors in acid rain atmospheres |
remote_bool |
true |
author2 |
Fernández-García, A. Ariza, M.J. Sutter, F. Valenzuela, L. |
author2Str |
Fernández-García, A. Ariza, M.J. Sutter, F. Valenzuela, L. |
ppnlink |
320504654 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.solmat.2018.06.032 |
up_date |
2024-07-06T16:57:20.766Z |
_version_ |
1803849606908346368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000128902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152034.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solmat.2018.06.032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000128902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-0248(18)30320-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">García-Segura, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degradation of concentrating solar thermal reflectors in acid rain atmospheres</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Given the importance that concentrating solar power technologies have had in recent years, the interaction between humid atmospheres in which SO2 is the main pollutant and the metal reflecting layers of the solar concentrators is a major concern that should be addressed. Previous durability studies have urged the importance of designing an accelerated aging test protocol for simulating aggressive industrial atmospheres that solar reflector materials are bound to encounter. Therefore, three types of reflectors were tested in an acid-rain (or Kesternich) chamber at various temperatures and gas concentrations based on the DIN 50018 and ISO 6988 standards. The results showed the significant effect of high SO2 concentrations rather than high temperatures on silvered-glass reflectors, although synergy should not be disregarded. Strong reductions in specular reflectance were found for one type of silvered reflector compared to another type, highlighting the significance of material processing and its effects on their final performance. Aluminum reflectors were not damaged as much as silvered-glass reflectors, but under microscopic inspection, a wide range of noticeable corrosion defects could be found in all the materials. Comparisons between the most representative Kesternich test and samples from an outdoor industrial site permitted realistic lifetime correlations for commercial silvered-glass reflectors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concentrating solar technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar reflector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerated aging test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acid rain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Service lifetime prediction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernández-García, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ariza, M.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sutter, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valenzuela, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy materials & solar cells</subfield><subfield code="d">Amsterdam [u.a.] : NH, Elsevier, 1992</subfield><subfield code="g">186, Seite 92-104</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504654</subfield><subfield code="w">(DE-600)2012677-3</subfield><subfield code="w">(DE-576)098474170</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:186</subfield><subfield code="g">pages:92-104</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">186</subfield><subfield code="h">92-104</subfield></datafield></record></collection>
|
score |
7.401019 |