An investigation of non-equilibrium heat transport in a gas system under external force field
The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Withou...
Ausführliche Beschreibung
Autor*in: |
Xiao, Tianbai [verfasserIn] Xu, Kun [verfasserIn] Cai, Qingdong [verfasserIn] Qian, Tiezheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and mass transfer - Amsterdam [u.a.] : Elsevier, 1960, 126, Seite 362-379 |
---|---|
Übergeordnetes Werk: |
volume:126 ; pages:362-379 |
DOI / URN: |
10.1016/j.ijheatmasstransfer.2018.05.035 |
---|
Katalog-ID: |
ELV000185884 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000185884 | ||
003 | DE-627 | ||
005 | 20230524142942.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2018.05.035 |2 doi | |
035 | |a (DE-627)ELV000185884 | ||
035 | |a (ELSEVIER)S0017-9310(18)30427-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Xiao, Tianbai |e verfasserin |4 aut | |
245 | 1 | 0 | |a An investigation of non-equilibrium heat transport in a gas system under external force field |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. | ||
650 | 4 | |a Multiscale flow | |
650 | 4 | |a Non-equilibrium phenomena | |
650 | 4 | |a External force field | |
650 | 4 | |a Unified gas-kinetic scheme | |
650 | 4 | |a Heat transfer | |
700 | 1 | |a Xu, Kun |e verfasserin |4 aut | |
700 | 1 | |a Cai, Qingdong |e verfasserin |4 aut | |
700 | 1 | |a Qian, Tiezheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and mass transfer |d Amsterdam [u.a.] : Elsevier, 1960 |g 126, Seite 362-379 |h Online-Ressource |w (DE-627)320505081 |w (DE-600)2012726-1 |w (DE-576)096806575 |x 1879-2189 |7 nnns |
773 | 1 | 8 | |g volume:126 |g pages:362-379 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 126 |h 362-379 |
author_variant |
t x tx k x kx q c qc t q tq |
---|---|
matchkey_str |
article:18792189:2018----::nnetgtoonnqiiruhatasotngsytm |
hierarchy_sort_str |
2018 |
bklnumber |
50.38 |
publishDate |
2018 |
allfields |
10.1016/j.ijheatmasstransfer.2018.05.035 doi (DE-627)ELV000185884 (ELSEVIER)S0017-9310(18)30427-7 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Xiao, Tianbai verfasserin aut An investigation of non-equilibrium heat transport in a gas system under external force field 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. Multiscale flow Non-equilibrium phenomena External force field Unified gas-kinetic scheme Heat transfer Xu, Kun verfasserin aut Cai, Qingdong verfasserin aut Qian, Tiezheng verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 126, Seite 362-379 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:126 pages:362-379 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 126 362-379 |
spelling |
10.1016/j.ijheatmasstransfer.2018.05.035 doi (DE-627)ELV000185884 (ELSEVIER)S0017-9310(18)30427-7 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Xiao, Tianbai verfasserin aut An investigation of non-equilibrium heat transport in a gas system under external force field 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. Multiscale flow Non-equilibrium phenomena External force field Unified gas-kinetic scheme Heat transfer Xu, Kun verfasserin aut Cai, Qingdong verfasserin aut Qian, Tiezheng verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 126, Seite 362-379 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:126 pages:362-379 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 126 362-379 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2018.05.035 doi (DE-627)ELV000185884 (ELSEVIER)S0017-9310(18)30427-7 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Xiao, Tianbai verfasserin aut An investigation of non-equilibrium heat transport in a gas system under external force field 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. Multiscale flow Non-equilibrium phenomena External force field Unified gas-kinetic scheme Heat transfer Xu, Kun verfasserin aut Cai, Qingdong verfasserin aut Qian, Tiezheng verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 126, Seite 362-379 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:126 pages:362-379 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 126 362-379 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2018.05.035 doi (DE-627)ELV000185884 (ELSEVIER)S0017-9310(18)30427-7 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Xiao, Tianbai verfasserin aut An investigation of non-equilibrium heat transport in a gas system under external force field 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. Multiscale flow Non-equilibrium phenomena External force field Unified gas-kinetic scheme Heat transfer Xu, Kun verfasserin aut Cai, Qingdong verfasserin aut Qian, Tiezheng verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 126, Seite 362-379 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:126 pages:362-379 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 126 362-379 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2018.05.035 doi (DE-627)ELV000185884 (ELSEVIER)S0017-9310(18)30427-7 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Xiao, Tianbai verfasserin aut An investigation of non-equilibrium heat transport in a gas system under external force field 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. Multiscale flow Non-equilibrium phenomena External force field Unified gas-kinetic scheme Heat transfer Xu, Kun verfasserin aut Cai, Qingdong verfasserin aut Qian, Tiezheng verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 126, Seite 362-379 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:126 pages:362-379 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 126 362-379 |
language |
English |
source |
Enthalten in International journal of heat and mass transfer 126, Seite 362-379 volume:126 pages:362-379 |
sourceStr |
Enthalten in International journal of heat and mass transfer 126, Seite 362-379 volume:126 pages:362-379 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Multiscale flow Non-equilibrium phenomena External force field Unified gas-kinetic scheme Heat transfer |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and mass transfer |
authorswithroles_txt_mv |
Xiao, Tianbai @@aut@@ Xu, Kun @@aut@@ Cai, Qingdong @@aut@@ Qian, Tiezheng @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320505081 |
dewey-sort |
3620 |
id |
ELV000185884 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000185884</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142942.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2018.05.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000185884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(18)30427-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Tianbai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An investigation of non-equilibrium heat transport in a gas system under external force field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-equilibrium phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">External force field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unified gas-kinetic scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Kun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Qingdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Tiezheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">126, Seite 362-379</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">pages:362-379</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="h">362-379</subfield></datafield></record></collection>
|
author |
Xiao, Tianbai |
spellingShingle |
Xiao, Tianbai ddc 620 bkl 50.38 misc Multiscale flow misc Non-equilibrium phenomena misc External force field misc Unified gas-kinetic scheme misc Heat transfer An investigation of non-equilibrium heat transport in a gas system under external force field |
authorStr |
Xiao, Tianbai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505081 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2189 |
topic_title |
620 DE-600 50.38 bkl An investigation of non-equilibrium heat transport in a gas system under external force field Multiscale flow Non-equilibrium phenomena External force field Unified gas-kinetic scheme Heat transfer |
topic |
ddc 620 bkl 50.38 misc Multiscale flow misc Non-equilibrium phenomena misc External force field misc Unified gas-kinetic scheme misc Heat transfer |
topic_unstemmed |
ddc 620 bkl 50.38 misc Multiscale flow misc Non-equilibrium phenomena misc External force field misc Unified gas-kinetic scheme misc Heat transfer |
topic_browse |
ddc 620 bkl 50.38 misc Multiscale flow misc Non-equilibrium phenomena misc External force field misc Unified gas-kinetic scheme misc Heat transfer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and mass transfer |
hierarchy_parent_id |
320505081 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 |
title |
An investigation of non-equilibrium heat transport in a gas system under external force field |
ctrlnum |
(DE-627)ELV000185884 (ELSEVIER)S0017-9310(18)30427-7 |
title_full |
An investigation of non-equilibrium heat transport in a gas system under external force field |
author_sort |
Xiao, Tianbai |
journal |
International journal of heat and mass transfer |
journalStr |
International journal of heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
362 |
author_browse |
Xiao, Tianbai Xu, Kun Cai, Qingdong Qian, Tiezheng |
container_volume |
126 |
class |
620 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xiao, Tianbai |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2018.05.035 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
an investigation of non-equilibrium heat transport in a gas system under external force field |
title_auth |
An investigation of non-equilibrium heat transport in a gas system under external force field |
abstract |
The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. |
abstractGer |
The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. |
abstract_unstemmed |
The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
An investigation of non-equilibrium heat transport in a gas system under external force field |
remote_bool |
true |
author2 |
Xu, Kun Cai, Qingdong Qian, Tiezheng |
author2Str |
Xu, Kun Cai, Qingdong Qian, Tiezheng |
ppnlink |
320505081 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatmasstransfer.2018.05.035 |
up_date |
2024-07-06T17:07:51.866Z |
_version_ |
1803850268663611392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000185884</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142942.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2018.05.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000185884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(18)30427-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Tianbai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An investigation of non-equilibrium heat transport in a gas system under external force field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The gas dynamics under external force field is essentially associated with multiple scale nature due to the large variations of density and local Knudsen number. Single scale governing equations, such as the Boltzmann and Navier-Stokes equations, are valid in their respective modeling scales. Without identifying a physical scale between the above two limits for the modeling of the flow motion, it is challenging to develop a multiple scale method to capture non-equilibrium flow physics seamlessly across all regimes. Based on the modeling scale of cell size and implementing conservation laws directly in a discretized space, a well-balanced unified gas-kinetic scheme (UGKS) for multiscale gaseous flow has been constructed and used in the study of non-equilibrium flow and heat transport under external force field. In this paper, static heat conduction problems under external force field in different flow regimes are quantitatively investigated. In the lid-driven cavity case, the stratified flow is observed under external force field. With the increment of external force, the flow topological structure changes dramatically, and the temperature gradient, shearing stress, and external force play different roles in the determination of the total heat flux in different layers corresponding to different flow regimes. As a typical non-Fourier’s heat conduction phenomena in the transition regime, the external force enhances the heat flux significantly along the forcing direction, with the relationship q → force ∝ ϕ → , where q → force is the force-induced heat flux and ϕ → is the external force acceleration. This relationship is valid in all flow regimes with non-vanishing viscosity coefficient or the limited length of particle mean free path. Both theoretical analysis and numerical experiments are used to show the important role of external force on non-equilibrium heat transfer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-equilibrium phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">External force field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unified gas-kinetic scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Kun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Qingdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Tiezheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">126, Seite 362-379</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">pages:362-379</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="h">362-379</subfield></datafield></record></collection>
|
score |
7.401005 |