Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir
Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours....
Ausführliche Beschreibung
Autor*in: |
Song, Wenhui [verfasserIn] Yao, Bowen [verfasserIn] Yao, Jun [verfasserIn] Li, Yang [verfasserIn] Sun, Hai [verfasserIn] Yang, Yongfei [verfasserIn] Zhang, Lei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 352, Seite 644-654 |
---|---|
Übergeordnetes Werk: |
volume:352 ; pages:644-654 |
DOI / URN: |
10.1016/j.cej.2018.07.050 |
---|
Katalog-ID: |
ELV000366463 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000366463 | ||
003 | DE-627 | ||
005 | 20230524131623.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2018.07.050 |2 doi | |
035 | |a (DE-627)ELV000366463 | ||
035 | |a (ELSEVIER)S1385-8947(18)31283-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 660.05 |q DE-101 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Song, Wenhui |e verfasserin |0 (orcid)0000-0002-2737-3646 |4 aut | |
245 | 1 | 0 | |a Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. | ||
650 | 4 | |a Surface diffusion | |
650 | 4 | |a Grand canonical Monte Carlos | |
650 | 4 | |a Methane adsorption | |
650 | 4 | |a Nanopores | |
650 | 4 | |a Organic-rich shale gas reservoir | |
700 | 1 | |a Yao, Bowen |e verfasserin |4 aut | |
700 | 1 | |a Yao, Jun |e verfasserin |4 aut | |
700 | 1 | |a Li, Yang |e verfasserin |4 aut | |
700 | 1 | |a Sun, Hai |e verfasserin |4 aut | |
700 | 1 | |a Yang, Yongfei |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Lei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 352, Seite 644-654 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:352 |g pages:644-654 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |
951 | |a AR | ||
952 | |d 352 |h 644-654 | ||
953 | |2 045F |a 660.05 |
author_variant |
w s ws b y by j y jy y l yl h s hs y y yy l z lz |
---|---|
matchkey_str |
article:18733212:2018----::ehnsraeifsocpcticrobsdailrwtapiainor |
hierarchy_sort_str |
2018 |
bklnumber |
58.10 |
publishDate |
2018 |
allfields |
10.1016/j.cej.2018.07.050 doi (DE-627)ELV000366463 (ELSEVIER)S1385-8947(18)31283-X DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Song, Wenhui verfasserin (orcid)0000-0002-2737-3646 aut Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. Surface diffusion Grand canonical Monte Carlos Methane adsorption Nanopores Organic-rich shale gas reservoir Yao, Bowen verfasserin aut Yao, Jun verfasserin aut Li, Yang verfasserin aut Sun, Hai verfasserin aut Yang, Yongfei verfasserin aut Zhang, Lei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 352, Seite 644-654 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:352 pages:644-654 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 352 644-654 045F 660.05 |
spelling |
10.1016/j.cej.2018.07.050 doi (DE-627)ELV000366463 (ELSEVIER)S1385-8947(18)31283-X DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Song, Wenhui verfasserin (orcid)0000-0002-2737-3646 aut Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. Surface diffusion Grand canonical Monte Carlos Methane adsorption Nanopores Organic-rich shale gas reservoir Yao, Bowen verfasserin aut Yao, Jun verfasserin aut Li, Yang verfasserin aut Sun, Hai verfasserin aut Yang, Yongfei verfasserin aut Zhang, Lei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 352, Seite 644-654 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:352 pages:644-654 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 352 644-654 045F 660.05 |
allfields_unstemmed |
10.1016/j.cej.2018.07.050 doi (DE-627)ELV000366463 (ELSEVIER)S1385-8947(18)31283-X DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Song, Wenhui verfasserin (orcid)0000-0002-2737-3646 aut Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. Surface diffusion Grand canonical Monte Carlos Methane adsorption Nanopores Organic-rich shale gas reservoir Yao, Bowen verfasserin aut Yao, Jun verfasserin aut Li, Yang verfasserin aut Sun, Hai verfasserin aut Yang, Yongfei verfasserin aut Zhang, Lei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 352, Seite 644-654 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:352 pages:644-654 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 352 644-654 045F 660.05 |
allfieldsGer |
10.1016/j.cej.2018.07.050 doi (DE-627)ELV000366463 (ELSEVIER)S1385-8947(18)31283-X DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Song, Wenhui verfasserin (orcid)0000-0002-2737-3646 aut Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. Surface diffusion Grand canonical Monte Carlos Methane adsorption Nanopores Organic-rich shale gas reservoir Yao, Bowen verfasserin aut Yao, Jun verfasserin aut Li, Yang verfasserin aut Sun, Hai verfasserin aut Yang, Yongfei verfasserin aut Zhang, Lei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 352, Seite 644-654 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:352 pages:644-654 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 352 644-654 045F 660.05 |
allfieldsSound |
10.1016/j.cej.2018.07.050 doi (DE-627)ELV000366463 (ELSEVIER)S1385-8947(18)31283-X DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Song, Wenhui verfasserin (orcid)0000-0002-2737-3646 aut Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. Surface diffusion Grand canonical Monte Carlos Methane adsorption Nanopores Organic-rich shale gas reservoir Yao, Bowen verfasserin aut Yao, Jun verfasserin aut Li, Yang verfasserin aut Sun, Hai verfasserin aut Yang, Yongfei verfasserin aut Zhang, Lei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 352, Seite 644-654 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:352 pages:644-654 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 352 644-654 045F 660.05 |
language |
English |
source |
Enthalten in The chemical engineering journal 352, Seite 644-654 volume:352 pages:644-654 |
sourceStr |
Enthalten in The chemical engineering journal 352, Seite 644-654 volume:352 pages:644-654 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Surface diffusion Grand canonical Monte Carlos Methane adsorption Nanopores Organic-rich shale gas reservoir |
dewey-raw |
660.05 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Song, Wenhui @@aut@@ Yao, Bowen @@aut@@ Yao, Jun @@aut@@ Li, Yang @@aut@@ Sun, Hai @@aut@@ Yang, Yongfei @@aut@@ Zhang, Lei @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660.05 |
id |
ELV000366463 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000366463</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2018.07.050</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000366463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(18)31283-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Wenhui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2737-3646</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grand canonical Monte Carlos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methane adsorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanopores</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic-rich shale gas reservoir</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Bowen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Hai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yongfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">352, Seite 644-654</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:352</subfield><subfield code="g">pages:644-654</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">352</subfield><subfield code="h">644-654</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
author |
Song, Wenhui |
spellingShingle |
Song, Wenhui ddc 660.05 ddc 660 bkl 58.10 misc Surface diffusion misc Grand canonical Monte Carlos misc Methane adsorption misc Nanopores misc Organic-rich shale gas reservoir Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir |
authorStr |
Song, Wenhui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir Surface diffusion Grand canonical Monte Carlos Methane adsorption Nanopores Organic-rich shale gas reservoir |
topic |
ddc 660.05 ddc 660 bkl 58.10 misc Surface diffusion misc Grand canonical Monte Carlos misc Methane adsorption misc Nanopores misc Organic-rich shale gas reservoir |
topic_unstemmed |
ddc 660.05 ddc 660 bkl 58.10 misc Surface diffusion misc Grand canonical Monte Carlos misc Methane adsorption misc Nanopores misc Organic-rich shale gas reservoir |
topic_browse |
ddc 660.05 ddc 660 bkl 58.10 misc Surface diffusion misc Grand canonical Monte Carlos misc Methane adsorption misc Nanopores misc Organic-rich shale gas reservoir |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir |
ctrlnum |
(DE-627)ELV000366463 (ELSEVIER)S1385-8947(18)31283-X |
title_full |
Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir |
author_sort |
Song, Wenhui |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
644 |
author_browse |
Song, Wenhui Yao, Bowen Yao, Jun Li, Yang Sun, Hai Yang, Yongfei Zhang, Lei |
container_volume |
352 |
class |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Song, Wenhui |
doi_str_mv |
10.1016/j.cej.2018.07.050 |
normlink |
(ORCID)0000-0002-2737-3646 |
normlink_prefix_str_mv |
(orcid)0000-0002-2737-3646 |
dewey-full |
660.05 660 |
author2-role |
verfasserin |
title_sort |
methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir |
title_auth |
Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir |
abstract |
Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. |
abstractGer |
Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. |
abstract_unstemmed |
Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir |
remote_bool |
true |
author2 |
Yao, Bowen Yao, Jun Li, Yang Sun, Hai Yang, Yongfei Zhang, Lei |
author2Str |
Yao, Bowen Yao, Jun Li, Yang Sun, Hai Yang, Yongfei Zhang, Lei |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2018.07.050 |
up_date |
2024-07-06T17:43:24.736Z |
_version_ |
1803852505140953088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000366463</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2018.07.050</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000366463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(18)31283-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Wenhui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2737-3646</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure (<5 MPa) can be comparable to methane permeability for 20–25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grand canonical Monte Carlos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methane adsorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanopores</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic-rich shale gas reservoir</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Bowen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Hai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yongfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">352, Seite 644-654</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:352</subfield><subfield code="g">pages:644-654</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">352</subfield><subfield code="h">644-654</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
score |
7.402815 |