Optimal operation of heat supply systems with piping network
It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optim...
Ausführliche Beschreibung
Autor*in: |
Yokoyama, Ryohei [verfasserIn] Kitano, Hiroyuki [verfasserIn] Wakui, Tetsuya [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
Energie / Energieökonomik / Energietechnik / Energiemanagement / Energieforschung |
---|---|
Schlagwörter: |
Übergeordnetes Werk: |
Enthalten in: Energy - Amsterdam [u.a.] : Elsevier Science, 1976, 137, Seite 888-897 |
---|---|
Übergeordnetes Werk: |
volume:137 ; pages:888-897 |
DOI / URN: |
10.1016/j.energy.2017.03.146 |
---|
Katalog-ID: |
ELV000427233 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000427233 | ||
003 | DE-627 | ||
005 | 20230524124244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2017.03.146 |2 doi | |
035 | |a (DE-627)ELV000427233 | ||
035 | |a (ELSEVIER)S0360-5442(17)30539-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q DE-600 |
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Yokoyama, Ryohei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimal operation of heat supply systems with piping network |
264 | 1 | |c 2017 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. | ||
650 | 7 | |8 1.1\x |a Energie |0 (DE-2867)14175-2 |2 stw | |
650 | 7 | |8 1.2\x |a Energieökonomik |0 (DE-2867)18350-4 |2 stw | |
650 | 7 | |8 1.3\x |a Energietechnik |0 (DE-2867)18353-5 |2 stw | |
650 | 7 | |8 1.4\x |a Energiemanagement |0 (DE-2867)18349-3 |2 stw | |
650 | 7 | |8 1.5\x |a Energieforschung |0 (DE-2867)18348-5 |2 stw | |
650 | 4 | |a Air conditioning | |
650 | 4 | |a Heat supply | |
650 | 4 | |a Piping network | |
650 | 4 | |a Optimal operation | |
650 | 4 | |a Mixed-integer linear programming | |
700 | 1 | |a Kitano, Hiroyuki |e verfasserin |4 aut | |
700 | 1 | |a Wakui, Tetsuya |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 137, Seite 888-897 |h Online-Ressource |w (DE-627)320597903 |w (DE-600)2019804-8 |w (DE-576)116451815 |x 1873-6785 |7 nnns |
773 | 1 | 8 | |g volume:137 |g pages:888-897 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2098 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |
951 | |a AR | ||
952 | |d 137 |h 888-897 |
author_variant |
r y ry h k hk t w tw |
---|---|
matchkey_str |
article:18736785:2017----::piaoeainfetupyytmwt |
hierarchy_sort_str |
2017 |
bklnumber |
50.70 |
publishDate |
2017 |
allfields |
10.1016/j.energy.2017.03.146 doi (DE-627)ELV000427233 (ELSEVIER)S0360-5442(17)30539-X DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Yokoyama, Ryohei verfasserin aut Optimal operation of heat supply systems with piping network 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Air conditioning Heat supply Piping network Optimal operation Mixed-integer linear programming Kitano, Hiroyuki verfasserin aut Wakui, Tetsuya verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 137, Seite 888-897 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:137 pages:888-897 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 137 888-897 |
spelling |
10.1016/j.energy.2017.03.146 doi (DE-627)ELV000427233 (ELSEVIER)S0360-5442(17)30539-X DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Yokoyama, Ryohei verfasserin aut Optimal operation of heat supply systems with piping network 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Air conditioning Heat supply Piping network Optimal operation Mixed-integer linear programming Kitano, Hiroyuki verfasserin aut Wakui, Tetsuya verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 137, Seite 888-897 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:137 pages:888-897 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 137 888-897 |
allfields_unstemmed |
10.1016/j.energy.2017.03.146 doi (DE-627)ELV000427233 (ELSEVIER)S0360-5442(17)30539-X DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Yokoyama, Ryohei verfasserin aut Optimal operation of heat supply systems with piping network 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Air conditioning Heat supply Piping network Optimal operation Mixed-integer linear programming Kitano, Hiroyuki verfasserin aut Wakui, Tetsuya verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 137, Seite 888-897 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:137 pages:888-897 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 137 888-897 |
allfieldsGer |
10.1016/j.energy.2017.03.146 doi (DE-627)ELV000427233 (ELSEVIER)S0360-5442(17)30539-X DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Yokoyama, Ryohei verfasserin aut Optimal operation of heat supply systems with piping network 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Air conditioning Heat supply Piping network Optimal operation Mixed-integer linear programming Kitano, Hiroyuki verfasserin aut Wakui, Tetsuya verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 137, Seite 888-897 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:137 pages:888-897 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 137 888-897 |
allfieldsSound |
10.1016/j.energy.2017.03.146 doi (DE-627)ELV000427233 (ELSEVIER)S0360-5442(17)30539-X DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Yokoyama, Ryohei verfasserin aut Optimal operation of heat supply systems with piping network 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Air conditioning Heat supply Piping network Optimal operation Mixed-integer linear programming Kitano, Hiroyuki verfasserin aut Wakui, Tetsuya verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 137, Seite 888-897 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:137 pages:888-897 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 137 888-897 |
language |
English |
source |
Enthalten in Energy 137, Seite 888-897 volume:137 pages:888-897 |
sourceStr |
Enthalten in Energy 137, Seite 888-897 volume:137 pages:888-897 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Energie Energieökonomik Energietechnik Energiemanagement Energieforschung Air conditioning Heat supply Piping network Optimal operation Mixed-integer linear programming |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Energy |
authorswithroles_txt_mv |
Yokoyama, Ryohei @@aut@@ Kitano, Hiroyuki @@aut@@ Wakui, Tetsuya @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
320597903 |
dewey-sort |
3600 |
id |
ELV000427233 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000427233</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2017.03.146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000427233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(17)30539-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yokoyama, Ryohei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal operation of heat supply systems with piping network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.1\x</subfield><subfield code="a">Energie</subfield><subfield code="0">(DE-2867)14175-2</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.2\x</subfield><subfield code="a">Energieökonomik</subfield><subfield code="0">(DE-2867)18350-4</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.3\x</subfield><subfield code="a">Energietechnik</subfield><subfield code="0">(DE-2867)18353-5</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.4\x</subfield><subfield code="a">Energiemanagement</subfield><subfield code="0">(DE-2867)18349-3</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.5\x</subfield><subfield code="a">Energieforschung</subfield><subfield code="0">(DE-2867)18348-5</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air conditioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat supply</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piping network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed-integer linear programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kitano, Hiroyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wakui, Tetsuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">137, Seite 888-897</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:137</subfield><subfield code="g">pages:888-897</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2098</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">137</subfield><subfield code="h">888-897</subfield></datafield></record></collection>
|
author |
Yokoyama, Ryohei |
spellingShingle |
Yokoyama, Ryohei ddc 600 bkl 50.70 stw Energie stw Energieökonomik stw Energietechnik stw Energiemanagement stw Energieforschung misc Air conditioning misc Heat supply misc Piping network misc Optimal operation misc Mixed-integer linear programming Optimal operation of heat supply systems with piping network |
authorStr |
Yokoyama, Ryohei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320597903 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6785 |
topic_title |
600 DE-600 50.70 bkl Optimal operation of heat supply systems with piping network 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Air conditioning Heat supply Piping network Optimal operation Mixed-integer linear programming |
topic |
ddc 600 bkl 50.70 stw Energie stw Energieökonomik stw Energietechnik stw Energiemanagement stw Energieforschung misc Air conditioning misc Heat supply misc Piping network misc Optimal operation misc Mixed-integer linear programming |
topic_unstemmed |
ddc 600 bkl 50.70 stw Energie stw Energieökonomik stw Energietechnik stw Energiemanagement stw Energieforschung misc Air conditioning misc Heat supply misc Piping network misc Optimal operation misc Mixed-integer linear programming |
topic_browse |
ddc 600 bkl 50.70 stw Energie stw Energieökonomik stw Energietechnik stw Energiemanagement stw Energieforschung misc Air conditioning misc Heat supply misc Piping network misc Optimal operation misc Mixed-integer linear programming |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy |
hierarchy_parent_id |
320597903 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 |
title |
Optimal operation of heat supply systems with piping network |
ctrlnum |
(DE-627)ELV000427233 (ELSEVIER)S0360-5442(17)30539-X |
title_full |
Optimal operation of heat supply systems with piping network |
author_sort |
Yokoyama, Ryohei |
journal |
Energy |
journalStr |
Energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
888 |
author_browse |
Yokoyama, Ryohei Kitano, Hiroyuki Wakui, Tetsuya |
container_volume |
137 |
class |
600 DE-600 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yokoyama, Ryohei |
doi_str_mv |
10.1016/j.energy.2017.03.146 |
normlink |
(DE-2867)14175-2 (DE-2867)18350-4 (DE-2867)18353-5 (DE-2867)18349-3 (DE-2867)18348-5 |
normlink_prefix_str_mv |
(DE-2867)14175-2 (DE-2867)18350-4 (DE-2867)18353-5 (DE-2867)18349-3 (DE-2867)18348-5 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
optimal operation of heat supply systems with piping network |
title_auth |
Optimal operation of heat supply systems with piping network |
abstract |
It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. |
abstractGer |
It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. |
abstract_unstemmed |
It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Optimal operation of heat supply systems with piping network |
remote_bool |
true |
author2 |
Kitano, Hiroyuki Wakui, Tetsuya |
author2Str |
Kitano, Hiroyuki Wakui, Tetsuya |
ppnlink |
320597903 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.energy.2017.03.146 |
up_date |
2024-07-06T17:55:59.497Z |
_version_ |
1803853296566272000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000427233</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2017.03.146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000427233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(17)30539-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yokoyama, Ryohei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal operation of heat supply systems with piping network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is expected that energy saving may be attained by connecting heat source equipment and air conditioning equipment in multiple buildings with piping network and operating heat source equipment flexibly in consideration of heat demands required by air conditioning equipment. In this paper, an optimization method is proposed to operate such heat supply systems with piping network rationally. Mass flow rates and temperatures of water are adopted as basic variables to express heat flow rates as well as pressure and heat losses in piping segments. The discreteness for the selection of piping segments for water flow are also taken into account. To avoid treating the nonlinearity directly, mass flow rates are discretized, and the optimization problem is finally formulated as a mixed-integer linear programming one, and its suboptimal solution is derived efficiently by a two-stage approach. A case study is conducted for a heat supply system for space cooling and heating of an exhibition center with multiple buildings. Through the study, the validity and effectiveness of the proposed optimization method is shown in terms of solution optimality and computation time. In addition, it is shown how the primary energy consumption can be reduced using piping network.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.1\x</subfield><subfield code="a">Energie</subfield><subfield code="0">(DE-2867)14175-2</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.2\x</subfield><subfield code="a">Energieökonomik</subfield><subfield code="0">(DE-2867)18350-4</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.3\x</subfield><subfield code="a">Energietechnik</subfield><subfield code="0">(DE-2867)18353-5</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.4\x</subfield><subfield code="a">Energiemanagement</subfield><subfield code="0">(DE-2867)18349-3</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.5\x</subfield><subfield code="a">Energieforschung</subfield><subfield code="0">(DE-2867)18348-5</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air conditioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat supply</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piping network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed-integer linear programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kitano, Hiroyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wakui, Tetsuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">137, Seite 888-897</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:137</subfield><subfield code="g">pages:888-897</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2098</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">137</subfield><subfield code="h">888-897</subfield></datafield></record></collection>
|
score |
7.399147 |