Simulation of non-stationary wind velocity field on bridges based on Taylor series
The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been de...
Ausführliche Beschreibung
Autor*in: |
Li, Yongle [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of wind engineering and industrial aerodynamics - Amsterdam [u.a.] : Elsevier Science, 2011, 169, Seite 117-127 |
---|---|
Übergeordnetes Werk: |
volume:169 ; pages:117-127 |
DOI / URN: |
10.1016/j.jweia.2017.07.005 |
---|
Katalog-ID: |
ELV000721778 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000721778 | ||
003 | DE-627 | ||
005 | 20231221124418.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jweia.2017.07.005 |2 doi | |
035 | |a (DE-627)ELV000721778 | ||
035 | |a (ELSEVIER)S0167-6105(16)30223-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 690 |q DE-600 |
084 | |a 56.11 |2 bkl | ||
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Li, Yongle |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simulation of non-stationary wind velocity field on bridges based on Taylor series |
264 | 1 | |c 2017 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. | ||
650 | 4 | |a Non-stationary wind | |
650 | 4 | |a Fast Fourier transform | |
650 | 4 | |a Taylor series expansion | |
650 | 4 | |a Approximation | |
700 | 1 | |a Togbenou, Koffi |4 oth | |
700 | 1 | |a Xiang, Huoyue |4 oth | |
700 | 1 | |a Chen, Ning |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of wind engineering and industrial aerodynamics |d Amsterdam [u.a.] : Elsevier Science, 2011 |g 169, Seite 117-127 |w (DE-627)320410811 |w (DE-600)2001287-1 |7 nnns |
773 | 1 | 8 | |g volume:169 |g pages:117-127 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2098 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 56.11 |
936 | b | k | |a 52.56 |
951 | |a AR | ||
952 | |d 169 |h 117-127 |
author_variant |
y l yl |
---|---|
matchkey_str |
liyongletogbenoukoffixianghuoyuechenning:2017----:iuainfosainrwnvlctfednrde |
hierarchy_sort_str |
2017 |
bklnumber |
56.11 52.56 |
publishDate |
2017 |
allfields |
10.1016/j.jweia.2017.07.005 doi (DE-627)ELV000721778 (ELSEVIER)S0167-6105(16)30223-9 DE-627 ger DE-627 rda eng 500 690 DE-600 56.11 bkl 52.56 bkl Li, Yongle verfasserin aut Simulation of non-stationary wind velocity field on bridges based on Taylor series 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. Non-stationary wind Fast Fourier transform Taylor series expansion Approximation Togbenou, Koffi oth Xiang, Huoyue oth Chen, Ning oth Enthalten in Journal of wind engineering and industrial aerodynamics Amsterdam [u.a.] : Elsevier Science, 2011 169, Seite 117-127 (DE-627)320410811 (DE-600)2001287-1 nnns volume:169 pages:117-127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.11 52.56 AR 169 117-127 |
spelling |
10.1016/j.jweia.2017.07.005 doi (DE-627)ELV000721778 (ELSEVIER)S0167-6105(16)30223-9 DE-627 ger DE-627 rda eng 500 690 DE-600 56.11 bkl 52.56 bkl Li, Yongle verfasserin aut Simulation of non-stationary wind velocity field on bridges based on Taylor series 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. Non-stationary wind Fast Fourier transform Taylor series expansion Approximation Togbenou, Koffi oth Xiang, Huoyue oth Chen, Ning oth Enthalten in Journal of wind engineering and industrial aerodynamics Amsterdam [u.a.] : Elsevier Science, 2011 169, Seite 117-127 (DE-627)320410811 (DE-600)2001287-1 nnns volume:169 pages:117-127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.11 52.56 AR 169 117-127 |
allfields_unstemmed |
10.1016/j.jweia.2017.07.005 doi (DE-627)ELV000721778 (ELSEVIER)S0167-6105(16)30223-9 DE-627 ger DE-627 rda eng 500 690 DE-600 56.11 bkl 52.56 bkl Li, Yongle verfasserin aut Simulation of non-stationary wind velocity field on bridges based on Taylor series 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. Non-stationary wind Fast Fourier transform Taylor series expansion Approximation Togbenou, Koffi oth Xiang, Huoyue oth Chen, Ning oth Enthalten in Journal of wind engineering and industrial aerodynamics Amsterdam [u.a.] : Elsevier Science, 2011 169, Seite 117-127 (DE-627)320410811 (DE-600)2001287-1 nnns volume:169 pages:117-127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.11 52.56 AR 169 117-127 |
allfieldsGer |
10.1016/j.jweia.2017.07.005 doi (DE-627)ELV000721778 (ELSEVIER)S0167-6105(16)30223-9 DE-627 ger DE-627 rda eng 500 690 DE-600 56.11 bkl 52.56 bkl Li, Yongle verfasserin aut Simulation of non-stationary wind velocity field on bridges based on Taylor series 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. Non-stationary wind Fast Fourier transform Taylor series expansion Approximation Togbenou, Koffi oth Xiang, Huoyue oth Chen, Ning oth Enthalten in Journal of wind engineering and industrial aerodynamics Amsterdam [u.a.] : Elsevier Science, 2011 169, Seite 117-127 (DE-627)320410811 (DE-600)2001287-1 nnns volume:169 pages:117-127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.11 52.56 AR 169 117-127 |
allfieldsSound |
10.1016/j.jweia.2017.07.005 doi (DE-627)ELV000721778 (ELSEVIER)S0167-6105(16)30223-9 DE-627 ger DE-627 rda eng 500 690 DE-600 56.11 bkl 52.56 bkl Li, Yongle verfasserin aut Simulation of non-stationary wind velocity field on bridges based on Taylor series 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. Non-stationary wind Fast Fourier transform Taylor series expansion Approximation Togbenou, Koffi oth Xiang, Huoyue oth Chen, Ning oth Enthalten in Journal of wind engineering and industrial aerodynamics Amsterdam [u.a.] : Elsevier Science, 2011 169, Seite 117-127 (DE-627)320410811 (DE-600)2001287-1 nnns volume:169 pages:117-127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.11 52.56 AR 169 117-127 |
language |
English |
source |
Enthalten in Journal of wind engineering and industrial aerodynamics 169, Seite 117-127 volume:169 pages:117-127 |
sourceStr |
Enthalten in Journal of wind engineering and industrial aerodynamics 169, Seite 117-127 volume:169 pages:117-127 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Non-stationary wind Fast Fourier transform Taylor series expansion Approximation |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Journal of wind engineering and industrial aerodynamics |
authorswithroles_txt_mv |
Li, Yongle @@aut@@ Togbenou, Koffi @@oth@@ Xiang, Huoyue @@oth@@ Chen, Ning @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
320410811 |
dewey-sort |
3500 |
id |
ELV000721778 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000721778</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231221124418.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jweia.2017.07.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000721778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-6105(16)30223-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yongle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation of non-stationary wind velocity field on bridges based on Taylor series</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-stationary wind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast Fourier transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor series expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Togbenou, Koffi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Huoyue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Ning</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of wind engineering and industrial aerodynamics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2011</subfield><subfield code="g">169, Seite 117-127</subfield><subfield code="w">(DE-627)320410811</subfield><subfield code="w">(DE-600)2001287-1</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:169</subfield><subfield code="g">pages:117-127</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2098</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">169</subfield><subfield code="h">117-127</subfield></datafield></record></collection>
|
author |
Li, Yongle |
spellingShingle |
Li, Yongle ddc 500 bkl 56.11 bkl 52.56 misc Non-stationary wind misc Fast Fourier transform misc Taylor series expansion misc Approximation Simulation of non-stationary wind velocity field on bridges based on Taylor series |
authorStr |
Li, Yongle |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320410811 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
500 690 DE-600 56.11 bkl 52.56 bkl Simulation of non-stationary wind velocity field on bridges based on Taylor series Non-stationary wind Fast Fourier transform Taylor series expansion Approximation |
topic |
ddc 500 bkl 56.11 bkl 52.56 misc Non-stationary wind misc Fast Fourier transform misc Taylor series expansion misc Approximation |
topic_unstemmed |
ddc 500 bkl 56.11 bkl 52.56 misc Non-stationary wind misc Fast Fourier transform misc Taylor series expansion misc Approximation |
topic_browse |
ddc 500 bkl 56.11 bkl 52.56 misc Non-stationary wind misc Fast Fourier transform misc Taylor series expansion misc Approximation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
author2_variant |
k t kt h x hx n c nc |
hierarchy_parent_title |
Journal of wind engineering and industrial aerodynamics |
hierarchy_parent_id |
320410811 |
dewey-tens |
500 - Science 690 - Building & construction |
hierarchy_top_title |
Journal of wind engineering and industrial aerodynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320410811 (DE-600)2001287-1 |
title |
Simulation of non-stationary wind velocity field on bridges based on Taylor series |
ctrlnum |
(DE-627)ELV000721778 (ELSEVIER)S0167-6105(16)30223-9 |
title_full |
Simulation of non-stationary wind velocity field on bridges based on Taylor series |
author_sort |
Li, Yongle |
journal |
Journal of wind engineering and industrial aerodynamics |
journalStr |
Journal of wind engineering and industrial aerodynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
117 |
author_browse |
Li, Yongle |
container_volume |
169 |
class |
500 690 DE-600 56.11 bkl 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Yongle |
doi_str_mv |
10.1016/j.jweia.2017.07.005 |
dewey-full |
500 690 |
title_sort |
simulation of non-stationary wind velocity field on bridges based on taylor series |
title_auth |
Simulation of non-stationary wind velocity field on bridges based on Taylor series |
abstract |
The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. |
abstractGer |
The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. |
abstract_unstemmed |
The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Simulation of non-stationary wind velocity field on bridges based on Taylor series |
remote_bool |
true |
author2 |
Togbenou, Koffi Xiang, Huoyue Chen, Ning |
author2Str |
Togbenou, Koffi Xiang, Huoyue Chen, Ning |
ppnlink |
320410811 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.jweia.2017.07.005 |
up_date |
2024-07-06T18:56:51.869Z |
_version_ |
1803857126352748544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000721778</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231221124418.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jweia.2017.07.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000721778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-6105(16)30223-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yongle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation of non-stationary wind velocity field on bridges based on Taylor series</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The simulation of non-stationary wind velocity field based on the spectral representation method often requires significant computational efforts due to the summation of trigonometric functions usually involved in the simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists of locating and expanding the time and frequency non separable part of the decomposed evolutionary power spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm. Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm once the Taylor series expansion is successful. The present approach, which is primarily developed for the simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its higher efficiency. The approach was further improved by reformulating the simulation formulas where the order in which the summation operations are executed is imposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-stationary wind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast Fourier transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor series expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Togbenou, Koffi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Huoyue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Ning</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of wind engineering and industrial aerodynamics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2011</subfield><subfield code="g">169, Seite 117-127</subfield><subfield code="w">(DE-627)320410811</subfield><subfield code="w">(DE-600)2001287-1</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:169</subfield><subfield code="g">pages:117-127</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2098</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">169</subfield><subfield code="h">117-127</subfield></datafield></record></collection>
|
score |
7.400985 |