Solenoid model for visualizing magnetic flux leakage testing of complex defects
Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of th...
Ausführliche Beschreibung
Autor*in: |
Cheng, Yuhua [verfasserIn] Wang, Yonggang [verfasserIn] Yu, Haichao [verfasserIn] Zhang, Yangzhen [verfasserIn] Zhang, Jie [verfasserIn] Yang, Qinghui [verfasserIn] Sheng, Hanmin [verfasserIn] Bai, Libing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: NDT & E international - Amsterdam [u.a.] : Elsevier Science, 1991, 100, Seite 166-174 |
---|---|
Übergeordnetes Werk: |
volume:100 ; pages:166-174 |
DOI / URN: |
10.1016/j.ndteint.2018.09.011 |
---|
Katalog-ID: |
ELV000838071 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000838071 | ||
003 | DE-627 | ||
005 | 20230524130950.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ndteint.2018.09.011 |2 doi | |
035 | |a (DE-627)ELV000838071 | ||
035 | |a (ELSEVIER)S0963-8695(18)30408-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q DE-600 |
084 | |a 51.30 |2 bkl | ||
100 | 1 | |a Cheng, Yuhua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Solenoid model for visualizing magnetic flux leakage testing of complex defects |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. | ||
650 | 4 | |a Solenoid model | |
650 | 4 | |a Magnetic flux leakage testing | |
650 | 4 | |a Magnetic flux leakage field modeling | |
650 | 4 | |a Complex defect | |
700 | 1 | |a Wang, Yonggang |e verfasserin |4 aut | |
700 | 1 | |a Yu, Haichao |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yangzhen |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jie |e verfasserin |4 aut | |
700 | 1 | |a Yang, Qinghui |e verfasserin |4 aut | |
700 | 1 | |a Sheng, Hanmin |e verfasserin |4 aut | |
700 | 1 | |a Bai, Libing |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t NDT & E international |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 100, Seite 166-174 |h Online-Ressource |w (DE-627)320530124 |w (DE-600)2015652-2 |w (DE-576)251938239 |7 nnns |
773 | 1 | 8 | |g volume:100 |g pages:166-174 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.30 |j Werkstoffprüfung |j Werkstoffuntersuchung |
951 | |a AR | ||
952 | |d 100 |h 166-174 |
author_variant |
y c yc y w yw h y hy y z yz j z jz q y qy h s hs l b lb |
---|---|
matchkey_str |
chengyuhuawangyonggangyuhaichaozhangyang:2018----:oeodoefriulznmgeifulaaeet |
hierarchy_sort_str |
2018 |
bklnumber |
51.30 |
publishDate |
2018 |
allfields |
10.1016/j.ndteint.2018.09.011 doi (DE-627)ELV000838071 (ELSEVIER)S0963-8695(18)30408-0 DE-627 ger DE-627 rda eng 600 DE-600 51.30 bkl Cheng, Yuhua verfasserin aut Solenoid model for visualizing magnetic flux leakage testing of complex defects 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. Solenoid model Magnetic flux leakage testing Magnetic flux leakage field modeling Complex defect Wang, Yonggang verfasserin aut Yu, Haichao verfasserin aut Zhang, Yangzhen verfasserin aut Zhang, Jie verfasserin aut Yang, Qinghui verfasserin aut Sheng, Hanmin verfasserin aut Bai, Libing verfasserin aut Enthalten in NDT & E international Amsterdam [u.a.] : Elsevier Science, 1991 100, Seite 166-174 Online-Ressource (DE-627)320530124 (DE-600)2015652-2 (DE-576)251938239 nnns volume:100 pages:166-174 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.30 Werkstoffprüfung Werkstoffuntersuchung AR 100 166-174 |
spelling |
10.1016/j.ndteint.2018.09.011 doi (DE-627)ELV000838071 (ELSEVIER)S0963-8695(18)30408-0 DE-627 ger DE-627 rda eng 600 DE-600 51.30 bkl Cheng, Yuhua verfasserin aut Solenoid model for visualizing magnetic flux leakage testing of complex defects 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. Solenoid model Magnetic flux leakage testing Magnetic flux leakage field modeling Complex defect Wang, Yonggang verfasserin aut Yu, Haichao verfasserin aut Zhang, Yangzhen verfasserin aut Zhang, Jie verfasserin aut Yang, Qinghui verfasserin aut Sheng, Hanmin verfasserin aut Bai, Libing verfasserin aut Enthalten in NDT & E international Amsterdam [u.a.] : Elsevier Science, 1991 100, Seite 166-174 Online-Ressource (DE-627)320530124 (DE-600)2015652-2 (DE-576)251938239 nnns volume:100 pages:166-174 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.30 Werkstoffprüfung Werkstoffuntersuchung AR 100 166-174 |
allfields_unstemmed |
10.1016/j.ndteint.2018.09.011 doi (DE-627)ELV000838071 (ELSEVIER)S0963-8695(18)30408-0 DE-627 ger DE-627 rda eng 600 DE-600 51.30 bkl Cheng, Yuhua verfasserin aut Solenoid model for visualizing magnetic flux leakage testing of complex defects 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. Solenoid model Magnetic flux leakage testing Magnetic flux leakage field modeling Complex defect Wang, Yonggang verfasserin aut Yu, Haichao verfasserin aut Zhang, Yangzhen verfasserin aut Zhang, Jie verfasserin aut Yang, Qinghui verfasserin aut Sheng, Hanmin verfasserin aut Bai, Libing verfasserin aut Enthalten in NDT & E international Amsterdam [u.a.] : Elsevier Science, 1991 100, Seite 166-174 Online-Ressource (DE-627)320530124 (DE-600)2015652-2 (DE-576)251938239 nnns volume:100 pages:166-174 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.30 Werkstoffprüfung Werkstoffuntersuchung AR 100 166-174 |
allfieldsGer |
10.1016/j.ndteint.2018.09.011 doi (DE-627)ELV000838071 (ELSEVIER)S0963-8695(18)30408-0 DE-627 ger DE-627 rda eng 600 DE-600 51.30 bkl Cheng, Yuhua verfasserin aut Solenoid model for visualizing magnetic flux leakage testing of complex defects 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. Solenoid model Magnetic flux leakage testing Magnetic flux leakage field modeling Complex defect Wang, Yonggang verfasserin aut Yu, Haichao verfasserin aut Zhang, Yangzhen verfasserin aut Zhang, Jie verfasserin aut Yang, Qinghui verfasserin aut Sheng, Hanmin verfasserin aut Bai, Libing verfasserin aut Enthalten in NDT & E international Amsterdam [u.a.] : Elsevier Science, 1991 100, Seite 166-174 Online-Ressource (DE-627)320530124 (DE-600)2015652-2 (DE-576)251938239 nnns volume:100 pages:166-174 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.30 Werkstoffprüfung Werkstoffuntersuchung AR 100 166-174 |
allfieldsSound |
10.1016/j.ndteint.2018.09.011 doi (DE-627)ELV000838071 (ELSEVIER)S0963-8695(18)30408-0 DE-627 ger DE-627 rda eng 600 DE-600 51.30 bkl Cheng, Yuhua verfasserin aut Solenoid model for visualizing magnetic flux leakage testing of complex defects 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. Solenoid model Magnetic flux leakage testing Magnetic flux leakage field modeling Complex defect Wang, Yonggang verfasserin aut Yu, Haichao verfasserin aut Zhang, Yangzhen verfasserin aut Zhang, Jie verfasserin aut Yang, Qinghui verfasserin aut Sheng, Hanmin verfasserin aut Bai, Libing verfasserin aut Enthalten in NDT & E international Amsterdam [u.a.] : Elsevier Science, 1991 100, Seite 166-174 Online-Ressource (DE-627)320530124 (DE-600)2015652-2 (DE-576)251938239 nnns volume:100 pages:166-174 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.30 Werkstoffprüfung Werkstoffuntersuchung AR 100 166-174 |
language |
English |
source |
Enthalten in NDT & E international 100, Seite 166-174 volume:100 pages:166-174 |
sourceStr |
Enthalten in NDT & E international 100, Seite 166-174 volume:100 pages:166-174 |
format_phy_str_mv |
Article |
bklname |
Werkstoffprüfung Werkstoffuntersuchung |
institution |
findex.gbv.de |
topic_facet |
Solenoid model Magnetic flux leakage testing Magnetic flux leakage field modeling Complex defect |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
NDT & E international |
authorswithroles_txt_mv |
Cheng, Yuhua @@aut@@ Wang, Yonggang @@aut@@ Yu, Haichao @@aut@@ Zhang, Yangzhen @@aut@@ Zhang, Jie @@aut@@ Yang, Qinghui @@aut@@ Sheng, Hanmin @@aut@@ Bai, Libing @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320530124 |
dewey-sort |
3600 |
id |
ELV000838071 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000838071</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524130950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ndteint.2018.09.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000838071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0963-8695(18)30408-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Yuhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solenoid model for visualizing magnetic flux leakage testing of complex defects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solenoid model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic flux leakage testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic flux leakage field modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex defect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yonggang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Haichao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yangzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qinghui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sheng, Hanmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Libing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">NDT & E international</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">100, Seite 166-174</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320530124</subfield><subfield code="w">(DE-600)2015652-2</subfield><subfield code="w">(DE-576)251938239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">pages:166-174</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.30</subfield><subfield code="j">Werkstoffprüfung</subfield><subfield code="j">Werkstoffuntersuchung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="h">166-174</subfield></datafield></record></collection>
|
author |
Cheng, Yuhua |
spellingShingle |
Cheng, Yuhua ddc 600 bkl 51.30 misc Solenoid model misc Magnetic flux leakage testing misc Magnetic flux leakage field modeling misc Complex defect Solenoid model for visualizing magnetic flux leakage testing of complex defects |
authorStr |
Cheng, Yuhua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320530124 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 DE-600 51.30 bkl Solenoid model for visualizing magnetic flux leakage testing of complex defects Solenoid model Magnetic flux leakage testing Magnetic flux leakage field modeling Complex defect |
topic |
ddc 600 bkl 51.30 misc Solenoid model misc Magnetic flux leakage testing misc Magnetic flux leakage field modeling misc Complex defect |
topic_unstemmed |
ddc 600 bkl 51.30 misc Solenoid model misc Magnetic flux leakage testing misc Magnetic flux leakage field modeling misc Complex defect |
topic_browse |
ddc 600 bkl 51.30 misc Solenoid model misc Magnetic flux leakage testing misc Magnetic flux leakage field modeling misc Complex defect |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
NDT & E international |
hierarchy_parent_id |
320530124 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
NDT & E international |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320530124 (DE-600)2015652-2 (DE-576)251938239 |
title |
Solenoid model for visualizing magnetic flux leakage testing of complex defects |
ctrlnum |
(DE-627)ELV000838071 (ELSEVIER)S0963-8695(18)30408-0 |
title_full |
Solenoid model for visualizing magnetic flux leakage testing of complex defects |
author_sort |
Cheng, Yuhua |
journal |
NDT & E international |
journalStr |
NDT & E international |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
166 |
author_browse |
Cheng, Yuhua Wang, Yonggang Yu, Haichao Zhang, Yangzhen Zhang, Jie Yang, Qinghui Sheng, Hanmin Bai, Libing |
container_volume |
100 |
class |
600 DE-600 51.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cheng, Yuhua |
doi_str_mv |
10.1016/j.ndteint.2018.09.011 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
solenoid model for visualizing magnetic flux leakage testing of complex defects |
title_auth |
Solenoid model for visualizing magnetic flux leakage testing of complex defects |
abstract |
Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. |
abstractGer |
Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. |
abstract_unstemmed |
Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Solenoid model for visualizing magnetic flux leakage testing of complex defects |
remote_bool |
true |
author2 |
Wang, Yonggang Yu, Haichao Zhang, Yangzhen Zhang, Jie Yang, Qinghui Sheng, Hanmin Bai, Libing |
author2Str |
Wang, Yonggang Yu, Haichao Zhang, Yangzhen Zhang, Jie Yang, Qinghui Sheng, Hanmin Bai, Libing |
ppnlink |
320530124 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ndteint.2018.09.011 |
up_date |
2024-07-06T19:21:03.140Z |
_version_ |
1803858648122785792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000838071</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524130950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ndteint.2018.09.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000838071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0963-8695(18)30408-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Yuhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solenoid model for visualizing magnetic flux leakage testing of complex defects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Magnetic flux leakage (MFL) techniques are widely used for nondestructive testing of ferromagnetic materials. An analytical model of the MFL field is essential for precise determination and reconstruction of defects. In this paper, we proposed a solenoid model based on magnetization mechanisms of the magnetic medium to explain the MFL principle and simulate the MFL field. By introducing the interaction of solenoids and the Jiles–Atherton model, this model can accurately calculate the MFL field of complex defects, particularly the field distortion caused by the coupling of the defect's components. The solenoid model was experimentally demonstrated with a Z-shaped defect in the specimen and proved to be valid for precise calculation of the magneto-optical image. This work reveals the MFL testing principle from the viewpoint of the magnetic medium and thus helps elucidate and eradicate the simulation errors. The more accurate simulation than the common magnetic dipole model facilitates the inverse calculation of defects, even if field distortion is involved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solenoid model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic flux leakage testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic flux leakage field modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex defect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yonggang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Haichao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yangzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qinghui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sheng, Hanmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Libing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">NDT & E international</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">100, Seite 166-174</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320530124</subfield><subfield code="w">(DE-600)2015652-2</subfield><subfield code="w">(DE-576)251938239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">pages:166-174</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.30</subfield><subfield code="j">Werkstoffprüfung</subfield><subfield code="j">Werkstoffuntersuchung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="h">166-174</subfield></datafield></record></collection>
|
score |
7.400646 |