Permuted composition tableaux, 0-Hecke algebra and labeled binary trees
We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux...
Ausführliche Beschreibung
Autor*in: |
Tewari, V. [verfasserIn] van Willigenburg, S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of combinatorial theory / A - Amsterdam [u.a.] : Elsevier, 1971, 161, Seite 420-452 |
---|---|
Übergeordnetes Werk: |
volume:161 ; pages:420-452 |
DOI / URN: |
10.1016/j.jcta.2018.09.003 |
---|
Katalog-ID: |
ELV000864226 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000864226 | ||
003 | DE-627 | ||
005 | 20230524163714.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcta.2018.09.003 |2 doi | |
035 | |a (DE-627)ELV000864226 | ||
035 | |a (ELSEVIER)S0097-3165(18)30123-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.12 |2 bkl | ||
100 | 1 | |a Tewari, V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Permuted composition tableaux, 0-Hecke algebra and labeled binary trees |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . | ||
650 | 4 | |a 0-Hecke algebra | |
650 | 4 | |a Allowable pair | |
650 | 4 | |a Composition tableau | |
650 | 4 | |a Descent | |
650 | 4 | |a Dyck path | |
650 | 4 | |a Labeled tree | |
650 | 4 | |a Pattern avoidance | |
650 | 4 | |a Reverse tableau | |
700 | 1 | |a van Willigenburg, S. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of combinatorial theory / A |d Amsterdam [u.a.] : Elsevier, 1971 |g 161, Seite 420-452 |h Online-Ressource |w (DE-627)266892361 |w (DE-600)1469152-8 |w (DE-576)104193808 |7 nnns |
773 | 1 | 8 | |g volume:161 |g pages:420-452 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.12 |j Kombinatorik |j Graphentheorie |
951 | |a AR | ||
952 | |d 161 |h 420-452 |
author_variant |
v t vt w s v ws wsv |
---|---|
matchkey_str |
tewarivvanwilligenburgs:2018----:emtdopstotbeu0ekagbanl |
hierarchy_sort_str |
2018 |
bklnumber |
31.12 |
publishDate |
2018 |
allfields |
10.1016/j.jcta.2018.09.003 doi (DE-627)ELV000864226 (ELSEVIER)S0097-3165(18)30123-7 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl Tewari, V. verfasserin aut Permuted composition tableaux, 0-Hecke algebra and labeled binary trees 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . 0-Hecke algebra Allowable pair Composition tableau Descent Dyck path Labeled tree Pattern avoidance Reverse tableau van Willigenburg, S. verfasserin aut Enthalten in Journal of combinatorial theory / A Amsterdam [u.a.] : Elsevier, 1971 161, Seite 420-452 Online-Ressource (DE-627)266892361 (DE-600)1469152-8 (DE-576)104193808 nnns volume:161 pages:420-452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie AR 161 420-452 |
spelling |
10.1016/j.jcta.2018.09.003 doi (DE-627)ELV000864226 (ELSEVIER)S0097-3165(18)30123-7 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl Tewari, V. verfasserin aut Permuted composition tableaux, 0-Hecke algebra and labeled binary trees 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . 0-Hecke algebra Allowable pair Composition tableau Descent Dyck path Labeled tree Pattern avoidance Reverse tableau van Willigenburg, S. verfasserin aut Enthalten in Journal of combinatorial theory / A Amsterdam [u.a.] : Elsevier, 1971 161, Seite 420-452 Online-Ressource (DE-627)266892361 (DE-600)1469152-8 (DE-576)104193808 nnns volume:161 pages:420-452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie AR 161 420-452 |
allfields_unstemmed |
10.1016/j.jcta.2018.09.003 doi (DE-627)ELV000864226 (ELSEVIER)S0097-3165(18)30123-7 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl Tewari, V. verfasserin aut Permuted composition tableaux, 0-Hecke algebra and labeled binary trees 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . 0-Hecke algebra Allowable pair Composition tableau Descent Dyck path Labeled tree Pattern avoidance Reverse tableau van Willigenburg, S. verfasserin aut Enthalten in Journal of combinatorial theory / A Amsterdam [u.a.] : Elsevier, 1971 161, Seite 420-452 Online-Ressource (DE-627)266892361 (DE-600)1469152-8 (DE-576)104193808 nnns volume:161 pages:420-452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie AR 161 420-452 |
allfieldsGer |
10.1016/j.jcta.2018.09.003 doi (DE-627)ELV000864226 (ELSEVIER)S0097-3165(18)30123-7 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl Tewari, V. verfasserin aut Permuted composition tableaux, 0-Hecke algebra and labeled binary trees 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . 0-Hecke algebra Allowable pair Composition tableau Descent Dyck path Labeled tree Pattern avoidance Reverse tableau van Willigenburg, S. verfasserin aut Enthalten in Journal of combinatorial theory / A Amsterdam [u.a.] : Elsevier, 1971 161, Seite 420-452 Online-Ressource (DE-627)266892361 (DE-600)1469152-8 (DE-576)104193808 nnns volume:161 pages:420-452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie AR 161 420-452 |
allfieldsSound |
10.1016/j.jcta.2018.09.003 doi (DE-627)ELV000864226 (ELSEVIER)S0097-3165(18)30123-7 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl Tewari, V. verfasserin aut Permuted composition tableaux, 0-Hecke algebra and labeled binary trees 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . 0-Hecke algebra Allowable pair Composition tableau Descent Dyck path Labeled tree Pattern avoidance Reverse tableau van Willigenburg, S. verfasserin aut Enthalten in Journal of combinatorial theory / A Amsterdam [u.a.] : Elsevier, 1971 161, Seite 420-452 Online-Ressource (DE-627)266892361 (DE-600)1469152-8 (DE-576)104193808 nnns volume:161 pages:420-452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie AR 161 420-452 |
language |
English |
source |
Enthalten in Journal of combinatorial theory / A 161, Seite 420-452 volume:161 pages:420-452 |
sourceStr |
Enthalten in Journal of combinatorial theory / A 161, Seite 420-452 volume:161 pages:420-452 |
format_phy_str_mv |
Article |
bklname |
Kombinatorik Graphentheorie |
institution |
findex.gbv.de |
topic_facet |
0-Hecke algebra Allowable pair Composition tableau Descent Dyck path Labeled tree Pattern avoidance Reverse tableau |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of combinatorial theory / A |
authorswithroles_txt_mv |
Tewari, V. @@aut@@ van Willigenburg, S. @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
266892361 |
dewey-sort |
3510 |
id |
ELV000864226 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000864226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524163714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcta.2018.09.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000864226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0097-3165(18)30123-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tewari, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Permuted composition tableaux, 0-Hecke algebra and labeled binary trees</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">0-Hecke algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Allowable pair</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composition tableau</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Descent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dyck path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Labeled tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern avoidance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse tableau</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial theory / A</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1971</subfield><subfield code="g">161, Seite 420-452</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266892361</subfield><subfield code="w">(DE-600)1469152-8</subfield><subfield code="w">(DE-576)104193808</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:161</subfield><subfield code="g">pages:420-452</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.12</subfield><subfield code="j">Kombinatorik</subfield><subfield code="j">Graphentheorie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">161</subfield><subfield code="h">420-452</subfield></datafield></record></collection>
|
author |
Tewari, V. |
spellingShingle |
Tewari, V. ddc 510 bkl 31.12 misc 0-Hecke algebra misc Allowable pair misc Composition tableau misc Descent misc Dyck path misc Labeled tree misc Pattern avoidance misc Reverse tableau Permuted composition tableaux, 0-Hecke algebra and labeled binary trees |
authorStr |
Tewari, V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266892361 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 DE-600 31.12 bkl Permuted composition tableaux, 0-Hecke algebra and labeled binary trees 0-Hecke algebra Allowable pair Composition tableau Descent Dyck path Labeled tree Pattern avoidance Reverse tableau |
topic |
ddc 510 bkl 31.12 misc 0-Hecke algebra misc Allowable pair misc Composition tableau misc Descent misc Dyck path misc Labeled tree misc Pattern avoidance misc Reverse tableau |
topic_unstemmed |
ddc 510 bkl 31.12 misc 0-Hecke algebra misc Allowable pair misc Composition tableau misc Descent misc Dyck path misc Labeled tree misc Pattern avoidance misc Reverse tableau |
topic_browse |
ddc 510 bkl 31.12 misc 0-Hecke algebra misc Allowable pair misc Composition tableau misc Descent misc Dyck path misc Labeled tree misc Pattern avoidance misc Reverse tableau |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of combinatorial theory / A |
hierarchy_parent_id |
266892361 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of combinatorial theory / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266892361 (DE-600)1469152-8 (DE-576)104193808 |
title |
Permuted composition tableaux, 0-Hecke algebra and labeled binary trees |
ctrlnum |
(DE-627)ELV000864226 (ELSEVIER)S0097-3165(18)30123-7 |
title_full |
Permuted composition tableaux, 0-Hecke algebra and labeled binary trees |
author_sort |
Tewari, V. |
journal |
Journal of combinatorial theory / A |
journalStr |
Journal of combinatorial theory / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
420 |
author_browse |
Tewari, V. van Willigenburg, S. |
container_volume |
161 |
class |
510 DE-600 31.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tewari, V. |
doi_str_mv |
10.1016/j.jcta.2018.09.003 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
permuted composition tableaux, 0-hecke algebra and labeled binary trees |
title_auth |
Permuted composition tableaux, 0-Hecke algebra and labeled binary trees |
abstract |
We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . |
abstractGer |
We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . |
abstract_unstemmed |
We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 . |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Permuted composition tableaux, 0-Hecke algebra and labeled binary trees |
remote_bool |
true |
author2 |
van Willigenburg, S. |
author2Str |
van Willigenburg, S. |
ppnlink |
266892361 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jcta.2018.09.003 |
up_date |
2024-07-06T19:26:30.985Z |
_version_ |
1803858991893184512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000864226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524163714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcta.2018.09.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000864226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0097-3165(18)30123-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tewari, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Permuted composition tableaux, 0-Hecke algebra and labeled binary trees</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We introduce a generalization of semistandard composition tableaux called permuted composition tableaux. These tableaux are intimately related to permuted basement semistandard augmented fillings studied by Haglund, Mason and Remmel. Our primary motivation for studying permuted composition tableaux is to enumerate all possible ordered pairs of permutations ( σ 1 , σ 2 ) that can be obtained by standardizing the entries in two adjacent columns of an arbitrary composition tableau. We refer to such pairs as compatible pairs. To study compatible pairs in depth, we define a 0-Hecke action on permuted composition tableaux. This action naturally defines an equivalence relation on these tableaux. Certain distinguished representatives of the resulting equivalence classes in the special case of two-columned tableaux are in bijection with compatible pairs. We provide a bijection between two-columned tableaux and labeled binary trees. This bijection maps a quadruple of descent statistics for 2-columned tableaux to left and right ascent-descent statistics on labeled binary trees introduced by Gessel, and we use it to prove that the number of compatible pairs is ( n + 1 ) n − 1 .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">0-Hecke algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Allowable pair</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composition tableau</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Descent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dyck path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Labeled tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern avoidance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse tableau</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial theory / A</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1971</subfield><subfield code="g">161, Seite 420-452</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266892361</subfield><subfield code="w">(DE-600)1469152-8</subfield><subfield code="w">(DE-576)104193808</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:161</subfield><subfield code="g">pages:420-452</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.12</subfield><subfield code="j">Kombinatorik</subfield><subfield code="j">Graphentheorie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">161</subfield><subfield code="h">420-452</subfield></datafield></record></collection>
|
score |
7.4014044 |