Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery
We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outpe...
Ausführliche Beschreibung
Autor*in: |
Jin, Yan Qi [verfasserIn] Lin, Zhipeng [verfasserIn] Zhong, Rui [verfasserIn] Huang, Jilin [verfasserIn] Liang, Guofeng [verfasserIn] Li, Jiawang [verfasserIn] Jin, Yanshuo [verfasserIn] Meng, Hui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of power sources - New York, NY [u.a.] : Elsevier, 1976, 402, Seite 388-393 |
---|---|
Übergeordnetes Werk: |
volume:402 ; pages:388-393 |
DOI / URN: |
10.1016/j.jpowsour.2018.09.064 |
---|
Katalog-ID: |
ELV000894877 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000894877 | ||
003 | DE-627 | ||
005 | 20230524124537.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpowsour.2018.09.064 |2 doi | |
035 | |a (DE-627)ELV000894877 | ||
035 | |a (ELSEVIER)S0378-7753(18)31034-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 52.57 |2 bkl | ||
084 | |a 53.36 |2 bkl | ||
100 | 1 | |a Jin, Yan Qi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. | ||
650 | 4 | |a Cobalt iron carbonate hydroxide | |
650 | 4 | |a Porous carbon | |
650 | 4 | |a Zn–air battery | |
650 | 4 | |a Oxygen evolution reaction | |
650 | 4 | |a Oxygen reduction reaction | |
700 | 1 | |a Lin, Zhipeng |e verfasserin |4 aut | |
700 | 1 | |a Zhong, Rui |e verfasserin |4 aut | |
700 | 1 | |a Huang, Jilin |e verfasserin |4 aut | |
700 | 1 | |a Liang, Guofeng |e verfasserin |4 aut | |
700 | 1 | |a Li, Jiawang |e verfasserin |4 aut | |
700 | 1 | |a Jin, Yanshuo |e verfasserin |0 (orcid)0000-0001-9614-1454 |4 aut | |
700 | 1 | |a Meng, Hui |e verfasserin |0 (orcid)0000-0003-0400-5485 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of power sources |d New York, NY [u.a.] : Elsevier, 1976 |g 402, Seite 388-393 |h Online-Ressource |w (DE-627)302718923 |w (DE-600)1491915-1 |w (DE-576)259483958 |x 1873-2755 |7 nnns |
773 | 1 | 8 | |g volume:402 |g pages:388-393 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.57 |j Energiespeicherung |
936 | b | k | |a 53.36 |j Energiedirektumwandler |j elektrische Energiespeicher |
951 | |a AR | ||
952 | |d 402 |h 388-393 |
author_variant |
y q j yq yqj z l zl r z rz j h jh g l gl j l jl y j yj h m hm |
---|---|
matchkey_str |
article:18732755:2018----::oatrnabnthdoieyrto3prucroaatvadtbeiucinl |
hierarchy_sort_str |
2018 |
bklnumber |
52.57 53.36 |
publishDate |
2018 |
allfields |
10.1016/j.jpowsour.2018.09.064 doi (DE-627)ELV000894877 (ELSEVIER)S0378-7753(18)31034-6 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Jin, Yan Qi verfasserin aut Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. Cobalt iron carbonate hydroxide Porous carbon Zn–air battery Oxygen evolution reaction Oxygen reduction reaction Lin, Zhipeng verfasserin aut Zhong, Rui verfasserin aut Huang, Jilin verfasserin aut Liang, Guofeng verfasserin aut Li, Jiawang verfasserin aut Jin, Yanshuo verfasserin (orcid)0000-0001-9614-1454 aut Meng, Hui verfasserin (orcid)0000-0003-0400-5485 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 402, Seite 388-393 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:402 pages:388-393 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 402 388-393 |
spelling |
10.1016/j.jpowsour.2018.09.064 doi (DE-627)ELV000894877 (ELSEVIER)S0378-7753(18)31034-6 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Jin, Yan Qi verfasserin aut Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. Cobalt iron carbonate hydroxide Porous carbon Zn–air battery Oxygen evolution reaction Oxygen reduction reaction Lin, Zhipeng verfasserin aut Zhong, Rui verfasserin aut Huang, Jilin verfasserin aut Liang, Guofeng verfasserin aut Li, Jiawang verfasserin aut Jin, Yanshuo verfasserin (orcid)0000-0001-9614-1454 aut Meng, Hui verfasserin (orcid)0000-0003-0400-5485 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 402, Seite 388-393 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:402 pages:388-393 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 402 388-393 |
allfields_unstemmed |
10.1016/j.jpowsour.2018.09.064 doi (DE-627)ELV000894877 (ELSEVIER)S0378-7753(18)31034-6 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Jin, Yan Qi verfasserin aut Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. Cobalt iron carbonate hydroxide Porous carbon Zn–air battery Oxygen evolution reaction Oxygen reduction reaction Lin, Zhipeng verfasserin aut Zhong, Rui verfasserin aut Huang, Jilin verfasserin aut Liang, Guofeng verfasserin aut Li, Jiawang verfasserin aut Jin, Yanshuo verfasserin (orcid)0000-0001-9614-1454 aut Meng, Hui verfasserin (orcid)0000-0003-0400-5485 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 402, Seite 388-393 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:402 pages:388-393 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 402 388-393 |
allfieldsGer |
10.1016/j.jpowsour.2018.09.064 doi (DE-627)ELV000894877 (ELSEVIER)S0378-7753(18)31034-6 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Jin, Yan Qi verfasserin aut Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. Cobalt iron carbonate hydroxide Porous carbon Zn–air battery Oxygen evolution reaction Oxygen reduction reaction Lin, Zhipeng verfasserin aut Zhong, Rui verfasserin aut Huang, Jilin verfasserin aut Liang, Guofeng verfasserin aut Li, Jiawang verfasserin aut Jin, Yanshuo verfasserin (orcid)0000-0001-9614-1454 aut Meng, Hui verfasserin (orcid)0000-0003-0400-5485 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 402, Seite 388-393 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:402 pages:388-393 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 402 388-393 |
allfieldsSound |
10.1016/j.jpowsour.2018.09.064 doi (DE-627)ELV000894877 (ELSEVIER)S0378-7753(18)31034-6 DE-627 ger DE-627 rda eng 620 DE-600 52.57 bkl 53.36 bkl Jin, Yan Qi verfasserin aut Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. Cobalt iron carbonate hydroxide Porous carbon Zn–air battery Oxygen evolution reaction Oxygen reduction reaction Lin, Zhipeng verfasserin aut Zhong, Rui verfasserin aut Huang, Jilin verfasserin aut Liang, Guofeng verfasserin aut Li, Jiawang verfasserin aut Jin, Yanshuo verfasserin (orcid)0000-0001-9614-1454 aut Meng, Hui verfasserin (orcid)0000-0003-0400-5485 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 402, Seite 388-393 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:402 pages:388-393 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.57 Energiespeicherung 53.36 Energiedirektumwandler elektrische Energiespeicher AR 402 388-393 |
language |
English |
source |
Enthalten in Journal of power sources 402, Seite 388-393 volume:402 pages:388-393 |
sourceStr |
Enthalten in Journal of power sources 402, Seite 388-393 volume:402 pages:388-393 |
format_phy_str_mv |
Article |
bklname |
Energiespeicherung Energiedirektumwandler elektrische Energiespeicher |
institution |
findex.gbv.de |
topic_facet |
Cobalt iron carbonate hydroxide Porous carbon Zn–air battery Oxygen evolution reaction Oxygen reduction reaction |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of power sources |
authorswithroles_txt_mv |
Jin, Yan Qi @@aut@@ Lin, Zhipeng @@aut@@ Zhong, Rui @@aut@@ Huang, Jilin @@aut@@ Liang, Guofeng @@aut@@ Li, Jiawang @@aut@@ Jin, Yanshuo @@aut@@ Meng, Hui @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
302718923 |
dewey-sort |
3620 |
id |
ELV000894877 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000894877</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124537.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2018.09.064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000894877</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(18)31034-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jin, Yan Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cobalt iron carbonate hydroxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zn–air battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen evolution reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen reduction reaction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Zhipeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jilin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Guofeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jiawang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Yanshuo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9614-1454</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0400-5485</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of power sources</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">402, Seite 388-393</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718923</subfield><subfield code="w">(DE-600)1491915-1</subfield><subfield code="w">(DE-576)259483958</subfield><subfield code="x">1873-2755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:402</subfield><subfield code="g">pages:388-393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">402</subfield><subfield code="h">388-393</subfield></datafield></record></collection>
|
author |
Jin, Yan Qi |
spellingShingle |
Jin, Yan Qi ddc 620 bkl 52.57 bkl 53.36 misc Cobalt iron carbonate hydroxide misc Porous carbon misc Zn–air battery misc Oxygen evolution reaction misc Oxygen reduction reaction Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery |
authorStr |
Jin, Yan Qi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302718923 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2755 |
topic_title |
620 DE-600 52.57 bkl 53.36 bkl Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery Cobalt iron carbonate hydroxide Porous carbon Zn–air battery Oxygen evolution reaction Oxygen reduction reaction |
topic |
ddc 620 bkl 52.57 bkl 53.36 misc Cobalt iron carbonate hydroxide misc Porous carbon misc Zn–air battery misc Oxygen evolution reaction misc Oxygen reduction reaction |
topic_unstemmed |
ddc 620 bkl 52.57 bkl 53.36 misc Cobalt iron carbonate hydroxide misc Porous carbon misc Zn–air battery misc Oxygen evolution reaction misc Oxygen reduction reaction |
topic_browse |
ddc 620 bkl 52.57 bkl 53.36 misc Cobalt iron carbonate hydroxide misc Porous carbon misc Zn–air battery misc Oxygen evolution reaction misc Oxygen reduction reaction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of power sources |
hierarchy_parent_id |
302718923 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of power sources |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 |
title |
Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery |
ctrlnum |
(DE-627)ELV000894877 (ELSEVIER)S0378-7753(18)31034-6 |
title_full |
Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery |
author_sort |
Jin, Yan Qi |
journal |
Journal of power sources |
journalStr |
Journal of power sources |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
388 |
author_browse |
Jin, Yan Qi Lin, Zhipeng Zhong, Rui Huang, Jilin Liang, Guofeng Li, Jiawang Jin, Yanshuo Meng, Hui |
container_volume |
402 |
class |
620 DE-600 52.57 bkl 53.36 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jin, Yan Qi |
doi_str_mv |
10.1016/j.jpowsour.2018.09.064 |
normlink |
(ORCID)0000-0001-9614-1454 (ORCID)0000-0003-0400-5485 |
normlink_prefix_str_mv |
(orcid)0000-0001-9614-1454 (orcid)0000-0003-0400-5485 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
cobalt iron carbonate hydroxide hydrate on 3d porous carbon as active and stable bifunctional oxygen electrode for zn–air battery |
title_auth |
Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery |
abstract |
We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. |
abstractGer |
We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. |
abstract_unstemmed |
We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery |
remote_bool |
true |
author2 |
Lin, Zhipeng Zhong, Rui Huang, Jilin Liang, Guofeng Li, Jiawang Jin, Yanshuo Meng, Hui |
author2Str |
Lin, Zhipeng Zhong, Rui Huang, Jilin Liang, Guofeng Li, Jiawang Jin, Yanshuo Meng, Hui |
ppnlink |
302718923 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jpowsour.2018.09.064 |
up_date |
2024-07-06T19:32:27.979Z |
_version_ |
1803859366226427904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000894877</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124537.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2018.09.064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000894877</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(18)31034-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jin, Yan Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report cobalt iron carbonate hydroxide hydrate on three-dimensions porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. The difference between oxygen evolution reaction potential at 10 mA cm−2 and oxygen reduction reaction half-wave potential is only 0.804 V, outperforming most catalysts reported to date. The cobalt iron carbonate hydroxide hydrate on porous carbon serves as a superb air cathode electrocatalyst in high-performance rechargeable Zn–air battery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cobalt iron carbonate hydroxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zn–air battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen evolution reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen reduction reaction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Zhipeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jilin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Guofeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jiawang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Yanshuo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9614-1454</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0400-5485</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of power sources</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">402, Seite 388-393</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718923</subfield><subfield code="w">(DE-600)1491915-1</subfield><subfield code="w">(DE-576)259483958</subfield><subfield code="x">1873-2755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:402</subfield><subfield code="g">pages:388-393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">402</subfield><subfield code="h">388-393</subfield></datafield></record></collection>
|
score |
7.400923 |