Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray
Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flo...
Ausführliche Beschreibung
Autor*in: |
Pan, Yanzhi [verfasserIn] Li, Chao [verfasserIn] Ma, Yugao [verfasserIn] Huang, Shanfang [verfasserIn] Wang, Dong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental thermal and fluid science - New York, NY : Elsevier, 1988, 100, Seite 319-327 |
---|---|
Übergeordnetes Werk: |
volume:100 ; pages:319-327 |
DOI / URN: |
10.1016/j.expthermflusci.2018.09.017 |
---|
Katalog-ID: |
ELV000906166 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000906166 | ||
003 | DE-627 | ||
005 | 20230524153458.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230427s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.expthermflusci.2018.09.017 |2 doi | |
035 | |a (DE-627)ELV000906166 | ||
035 | |a (ELSEVIER)S0894-1777(18)30341-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
084 | |a 50.33 |2 bkl | ||
100 | 1 | |a Pan, Yanzhi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. | ||
650 | 4 | |a Multiphase flow | |
650 | 4 | |a Venturi meter | |
650 | 4 | |a Gamma ray | |
650 | 4 | |a Gas flow rate | |
650 | 4 | |a Flow regime | |
700 | 1 | |a Li, Chao |e verfasserin |4 aut | |
700 | 1 | |a Ma, Yugao |e verfasserin |4 aut | |
700 | 1 | |a Huang, Shanfang |e verfasserin |4 aut | |
700 | 1 | |a Wang, Dong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Experimental thermal and fluid science |d New York, NY : Elsevier, 1988 |g 100, Seite 319-327 |h Online-Ressource |w (DE-627)320504123 |w (DE-600)2012609-8 |w (DE-576)25927139X |7 nnns |
773 | 1 | 8 | |g volume:100 |g pages:319-327 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
936 | b | k | |a 50.33 |j Technische Strömungsmechanik |
951 | |a AR | ||
952 | |d 100 |h 319-327 |
author_variant |
y p yp c l cl y m ym s h sh d w dw |
---|---|
matchkey_str |
panyanzhilichaomayugaohuangshanfangwangd:2018----:afortmaueetnoqaiyutpaelwuig |
hierarchy_sort_str |
2018 |
bklnumber |
50.38 50.33 |
publishDate |
2018 |
allfields |
10.1016/j.expthermflusci.2018.09.017 doi (DE-627)ELV000906166 (ELSEVIER)S0894-1777(18)30341-8 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl 50.33 bkl Pan, Yanzhi verfasserin aut Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. Multiphase flow Venturi meter Gamma ray Gas flow rate Flow regime Li, Chao verfasserin aut Ma, Yugao verfasserin aut Huang, Shanfang verfasserin aut Wang, Dong verfasserin aut Enthalten in Experimental thermal and fluid science New York, NY : Elsevier, 1988 100, Seite 319-327 Online-Ressource (DE-627)320504123 (DE-600)2012609-8 (DE-576)25927139X nnns volume:100 pages:319-327 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik 50.33 Technische Strömungsmechanik AR 100 319-327 |
spelling |
10.1016/j.expthermflusci.2018.09.017 doi (DE-627)ELV000906166 (ELSEVIER)S0894-1777(18)30341-8 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl 50.33 bkl Pan, Yanzhi verfasserin aut Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. Multiphase flow Venturi meter Gamma ray Gas flow rate Flow regime Li, Chao verfasserin aut Ma, Yugao verfasserin aut Huang, Shanfang verfasserin aut Wang, Dong verfasserin aut Enthalten in Experimental thermal and fluid science New York, NY : Elsevier, 1988 100, Seite 319-327 Online-Ressource (DE-627)320504123 (DE-600)2012609-8 (DE-576)25927139X nnns volume:100 pages:319-327 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik 50.33 Technische Strömungsmechanik AR 100 319-327 |
allfields_unstemmed |
10.1016/j.expthermflusci.2018.09.017 doi (DE-627)ELV000906166 (ELSEVIER)S0894-1777(18)30341-8 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl 50.33 bkl Pan, Yanzhi verfasserin aut Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. Multiphase flow Venturi meter Gamma ray Gas flow rate Flow regime Li, Chao verfasserin aut Ma, Yugao verfasserin aut Huang, Shanfang verfasserin aut Wang, Dong verfasserin aut Enthalten in Experimental thermal and fluid science New York, NY : Elsevier, 1988 100, Seite 319-327 Online-Ressource (DE-627)320504123 (DE-600)2012609-8 (DE-576)25927139X nnns volume:100 pages:319-327 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik 50.33 Technische Strömungsmechanik AR 100 319-327 |
allfieldsGer |
10.1016/j.expthermflusci.2018.09.017 doi (DE-627)ELV000906166 (ELSEVIER)S0894-1777(18)30341-8 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl 50.33 bkl Pan, Yanzhi verfasserin aut Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. Multiphase flow Venturi meter Gamma ray Gas flow rate Flow regime Li, Chao verfasserin aut Ma, Yugao verfasserin aut Huang, Shanfang verfasserin aut Wang, Dong verfasserin aut Enthalten in Experimental thermal and fluid science New York, NY : Elsevier, 1988 100, Seite 319-327 Online-Ressource (DE-627)320504123 (DE-600)2012609-8 (DE-576)25927139X nnns volume:100 pages:319-327 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik 50.33 Technische Strömungsmechanik AR 100 319-327 |
allfieldsSound |
10.1016/j.expthermflusci.2018.09.017 doi (DE-627)ELV000906166 (ELSEVIER)S0894-1777(18)30341-8 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl 50.33 bkl Pan, Yanzhi verfasserin aut Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. Multiphase flow Venturi meter Gamma ray Gas flow rate Flow regime Li, Chao verfasserin aut Ma, Yugao verfasserin aut Huang, Shanfang verfasserin aut Wang, Dong verfasserin aut Enthalten in Experimental thermal and fluid science New York, NY : Elsevier, 1988 100, Seite 319-327 Online-Ressource (DE-627)320504123 (DE-600)2012609-8 (DE-576)25927139X nnns volume:100 pages:319-327 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik 50.33 Technische Strömungsmechanik AR 100 319-327 |
language |
English |
source |
Enthalten in Experimental thermal and fluid science 100, Seite 319-327 volume:100 pages:319-327 |
sourceStr |
Enthalten in Experimental thermal and fluid science 100, Seite 319-327 volume:100 pages:319-327 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik Technische Strömungsmechanik |
institution |
findex.gbv.de |
topic_facet |
Multiphase flow Venturi meter Gamma ray Gas flow rate Flow regime |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Experimental thermal and fluid science |
authorswithroles_txt_mv |
Pan, Yanzhi @@aut@@ Li, Chao @@aut@@ Ma, Yugao @@aut@@ Huang, Shanfang @@aut@@ Wang, Dong @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320504123 |
dewey-sort |
3620 |
id |
ELV000906166 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000906166</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153458.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.expthermflusci.2018.09.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000906166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0894-1777(18)30341-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Yanzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphase flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Venturi meter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gamma ray</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas flow rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow regime</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Yugao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shanfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental thermal and fluid science</subfield><subfield code="d">New York, NY : Elsevier, 1988</subfield><subfield code="g">100, Seite 319-327</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504123</subfield><subfield code="w">(DE-600)2012609-8</subfield><subfield code="w">(DE-576)25927139X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">pages:319-327</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="h">319-327</subfield></datafield></record></collection>
|
author |
Pan, Yanzhi |
spellingShingle |
Pan, Yanzhi ddc 620 bkl 50.38 bkl 50.33 misc Multiphase flow misc Venturi meter misc Gamma ray misc Gas flow rate misc Flow regime Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray |
authorStr |
Pan, Yanzhi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504123 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 DE-600 50.38 bkl 50.33 bkl Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray Multiphase flow Venturi meter Gamma ray Gas flow rate Flow regime |
topic |
ddc 620 bkl 50.38 bkl 50.33 misc Multiphase flow misc Venturi meter misc Gamma ray misc Gas flow rate misc Flow regime |
topic_unstemmed |
ddc 620 bkl 50.38 bkl 50.33 misc Multiphase flow misc Venturi meter misc Gamma ray misc Gas flow rate misc Flow regime |
topic_browse |
ddc 620 bkl 50.38 bkl 50.33 misc Multiphase flow misc Venturi meter misc Gamma ray misc Gas flow rate misc Flow regime |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Experimental thermal and fluid science |
hierarchy_parent_id |
320504123 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Experimental thermal and fluid science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504123 (DE-600)2012609-8 (DE-576)25927139X |
title |
Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray |
ctrlnum |
(DE-627)ELV000906166 (ELSEVIER)S0894-1777(18)30341-8 |
title_full |
Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray |
author_sort |
Pan, Yanzhi |
journal |
Experimental thermal and fluid science |
journalStr |
Experimental thermal and fluid science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
319 |
author_browse |
Pan, Yanzhi Li, Chao Ma, Yugao Huang, Shanfang Wang, Dong |
container_volume |
100 |
class |
620 DE-600 50.38 bkl 50.33 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pan, Yanzhi |
doi_str_mv |
10.1016/j.expthermflusci.2018.09.017 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
gas flow rate measurement in low-quality multiphase flows using venturi and gamma ray |
title_auth |
Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray |
abstract |
Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. |
abstractGer |
Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. |
abstract_unstemmed |
Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray |
remote_bool |
true |
author2 |
Li, Chao Ma, Yugao Huang, Shanfang Wang, Dong |
author2Str |
Li, Chao Ma, Yugao Huang, Shanfang Wang, Dong |
ppnlink |
320504123 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.expthermflusci.2018.09.017 |
up_date |
2024-07-06T19:34:48.224Z |
_version_ |
1803859513287114752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000906166</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153458.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230427s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.expthermflusci.2018.09.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000906166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0894-1777(18)30341-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Yanzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Online flow rate measurements are encountered in many areas with a great need for high accuracy, especially in low-quality (0–0.1) flows. This paper concerns gas flow rate measurements using a Venturi meter and gamma-ray attenuation technique. A linear correlation is developed to predict the gas flow rates with wide ranges of void fractions (0–95%). The correlation predictions were compared to experimental data in which the root mean square errors of the oil-air-water multiphase flow prediction results are 7.72%, 8.93% and 9.11% for the gas flow rate, the quality and the gas-liquid slip ratio, respectively. The effect of the Venturi size was tested, and the metering accuracy is found to increase with the inlet diameter. The prediction accuracy is improved for three-phase flows than for the corresponding two-phase flows due to the oil-water stirring in the three-phase flows. The analyses of the results indicate that the measurement accuracy is higher with stable flow regimes than intermittent flow regimes. The present method can be widely applied to both two-phase and three-phase flows in the oil industry even for different Venturis and fluid media.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphase flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Venturi meter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gamma ray</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas flow rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow regime</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Yugao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shanfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental thermal and fluid science</subfield><subfield code="d">New York, NY : Elsevier, 1988</subfield><subfield code="g">100, Seite 319-327</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504123</subfield><subfield code="w">(DE-600)2012609-8</subfield><subfield code="w">(DE-576)25927139X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">pages:319-327</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="h">319-327</subfield></datafield></record></collection>
|
score |
7.4010057 |