Backtracking search optimization algorithm based on knowledge learning
As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropri...
Ausführliche Beschreibung
Autor*in: |
Chen, Debao [verfasserIn] Zou, Feng [verfasserIn] Lu, Renquan [verfasserIn] Li, Suwen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Backtracking search optimization algorithm (BSA) |
---|
Übergeordnetes Werk: |
Enthalten in: Information sciences - New York, NY : Elsevier Science Inc., 1968, 473, Seite 202-226 |
---|---|
Übergeordnetes Werk: |
volume:473 ; pages:202-226 |
DOI / URN: |
10.1016/j.ins.2018.09.039 |
---|
Katalog-ID: |
ELV000954217 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV000954217 | ||
003 | DE-627 | ||
005 | 20230524132202.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ins.2018.09.039 |2 doi | |
035 | |a (DE-627)ELV000954217 | ||
035 | |a (ELSEVIER)S0020-0255(16)31931-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q DE-600 |
084 | |a LING |q DE-30 |2 fid | ||
084 | |a 54.00 |2 bkl | ||
084 | |a 53.71 |2 bkl | ||
100 | 1 | |a Chen, Debao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Backtracking search optimization algorithm based on knowledge learning |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. | ||
650 | 4 | |a Backtracking search optimization algorithm (BSA) | |
650 | 4 | |a Adaptive BSA with multiple sub-population (AMBSA) | |
650 | 4 | |a Evolutionary computation (EC) | |
650 | 4 | |a Optimization problem | |
700 | 1 | |a Zou, Feng |e verfasserin |4 aut | |
700 | 1 | |a Lu, Renquan |e verfasserin |4 aut | |
700 | 1 | |a Li, Suwen |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Information sciences |d New York, NY : Elsevier Science Inc., 1968 |g 473, Seite 202-226 |h Online-Ressource |w (DE-627)271175850 |w (DE-600)1478990-5 |w (DE-576)078412293 |x 0020-0255 |7 nnns |
773 | 1 | 8 | |g volume:473 |g pages:202-226 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a FID-LING | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |
936 | b | k | |a 53.71 |j Theoretische Nachrichtentechnik |
951 | |a AR | ||
952 | |d 473 |h 202-226 |
author_variant |
d c dc f z fz r l rl s l sl |
---|---|
matchkey_str |
article:00200255:2018----::akrcigerhpiiainloihbsd |
hierarchy_sort_str |
2018 |
bklnumber |
54.00 53.71 |
publishDate |
2018 |
allfields |
10.1016/j.ins.2018.09.039 doi (DE-627)ELV000954217 (ELSEVIER)S0020-0255(16)31931-4 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chen, Debao verfasserin aut Backtracking search optimization algorithm based on knowledge learning 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. Backtracking search optimization algorithm (BSA) Adaptive BSA with multiple sub-population (AMBSA) Evolutionary computation (EC) Optimization problem Zou, Feng verfasserin aut Lu, Renquan verfasserin aut Li, Suwen verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 473, Seite 202-226 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:473 pages:202-226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 473 202-226 |
spelling |
10.1016/j.ins.2018.09.039 doi (DE-627)ELV000954217 (ELSEVIER)S0020-0255(16)31931-4 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chen, Debao verfasserin aut Backtracking search optimization algorithm based on knowledge learning 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. Backtracking search optimization algorithm (BSA) Adaptive BSA with multiple sub-population (AMBSA) Evolutionary computation (EC) Optimization problem Zou, Feng verfasserin aut Lu, Renquan verfasserin aut Li, Suwen verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 473, Seite 202-226 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:473 pages:202-226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 473 202-226 |
allfields_unstemmed |
10.1016/j.ins.2018.09.039 doi (DE-627)ELV000954217 (ELSEVIER)S0020-0255(16)31931-4 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chen, Debao verfasserin aut Backtracking search optimization algorithm based on knowledge learning 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. Backtracking search optimization algorithm (BSA) Adaptive BSA with multiple sub-population (AMBSA) Evolutionary computation (EC) Optimization problem Zou, Feng verfasserin aut Lu, Renquan verfasserin aut Li, Suwen verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 473, Seite 202-226 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:473 pages:202-226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 473 202-226 |
allfieldsGer |
10.1016/j.ins.2018.09.039 doi (DE-627)ELV000954217 (ELSEVIER)S0020-0255(16)31931-4 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chen, Debao verfasserin aut Backtracking search optimization algorithm based on knowledge learning 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. Backtracking search optimization algorithm (BSA) Adaptive BSA with multiple sub-population (AMBSA) Evolutionary computation (EC) Optimization problem Zou, Feng verfasserin aut Lu, Renquan verfasserin aut Li, Suwen verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 473, Seite 202-226 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:473 pages:202-226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 473 202-226 |
allfieldsSound |
10.1016/j.ins.2018.09.039 doi (DE-627)ELV000954217 (ELSEVIER)S0020-0255(16)31931-4 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chen, Debao verfasserin aut Backtracking search optimization algorithm based on knowledge learning 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. Backtracking search optimization algorithm (BSA) Adaptive BSA with multiple sub-population (AMBSA) Evolutionary computation (EC) Optimization problem Zou, Feng verfasserin aut Lu, Renquan verfasserin aut Li, Suwen verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 473, Seite 202-226 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:473 pages:202-226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 473 202-226 |
language |
English |
source |
Enthalten in Information sciences 473, Seite 202-226 volume:473 pages:202-226 |
sourceStr |
Enthalten in Information sciences 473, Seite 202-226 volume:473 pages:202-226 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines Theoretische Nachrichtentechnik |
institution |
findex.gbv.de |
topic_facet |
Backtracking search optimization algorithm (BSA) Adaptive BSA with multiple sub-population (AMBSA) Evolutionary computation (EC) Optimization problem |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Information sciences |
authorswithroles_txt_mv |
Chen, Debao @@aut@@ Zou, Feng @@aut@@ Lu, Renquan @@aut@@ Li, Suwen @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
271175850 |
dewey-sort |
270 |
id |
ELV000954217 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000954217</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132202.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ins.2018.09.039</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000954217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-0255(16)31931-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Debao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Backtracking search optimization algorithm based on knowledge learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backtracking search optimization algorithm (BSA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive BSA with multiple sub-population (AMBSA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary computation (EC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Renquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Suwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Information sciences</subfield><subfield code="d">New York, NY : Elsevier Science Inc., 1968</subfield><subfield code="g">473, Seite 202-226</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271175850</subfield><subfield code="w">(DE-600)1478990-5</subfield><subfield code="w">(DE-576)078412293</subfield><subfield code="x">0020-0255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:473</subfield><subfield code="g">pages:202-226</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.71</subfield><subfield code="j">Theoretische Nachrichtentechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">473</subfield><subfield code="h">202-226</subfield></datafield></record></collection>
|
author |
Chen, Debao |
spellingShingle |
Chen, Debao ddc 070 fid LING bkl 54.00 bkl 53.71 misc Backtracking search optimization algorithm (BSA) misc Adaptive BSA with multiple sub-population (AMBSA) misc Evolutionary computation (EC) misc Optimization problem Backtracking search optimization algorithm based on knowledge learning |
authorStr |
Chen, Debao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271175850 |
format |
electronic Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0020-0255 |
topic_title |
070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Backtracking search optimization algorithm based on knowledge learning Backtracking search optimization algorithm (BSA) Adaptive BSA with multiple sub-population (AMBSA) Evolutionary computation (EC) Optimization problem |
topic |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Backtracking search optimization algorithm (BSA) misc Adaptive BSA with multiple sub-population (AMBSA) misc Evolutionary computation (EC) misc Optimization problem |
topic_unstemmed |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Backtracking search optimization algorithm (BSA) misc Adaptive BSA with multiple sub-population (AMBSA) misc Evolutionary computation (EC) misc Optimization problem |
topic_browse |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Backtracking search optimization algorithm (BSA) misc Adaptive BSA with multiple sub-population (AMBSA) misc Evolutionary computation (EC) misc Optimization problem |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Information sciences |
hierarchy_parent_id |
271175850 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Information sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 |
title |
Backtracking search optimization algorithm based on knowledge learning |
ctrlnum |
(DE-627)ELV000954217 (ELSEVIER)S0020-0255(16)31931-4 |
title_full |
Backtracking search optimization algorithm based on knowledge learning |
author_sort |
Chen, Debao |
journal |
Information sciences |
journalStr |
Information sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
202 |
author_browse |
Chen, Debao Zou, Feng Lu, Renquan Li, Suwen |
container_volume |
473 |
class |
070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Debao |
doi_str_mv |
10.1016/j.ins.2018.09.039 |
dewey-full |
070 004 |
author2-role |
verfasserin |
title_sort |
backtracking search optimization algorithm based on knowledge learning |
title_auth |
Backtracking search optimization algorithm based on knowledge learning |
abstract |
As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. |
abstractGer |
As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. |
abstract_unstemmed |
As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Backtracking search optimization algorithm based on knowledge learning |
remote_bool |
true |
author2 |
Zou, Feng Lu, Renquan Li, Suwen |
author2Str |
Zou, Feng Lu, Renquan Li, Suwen |
ppnlink |
271175850 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ins.2018.09.039 |
up_date |
2024-07-06T19:44:01.786Z |
_version_ |
1803860093737893888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV000954217</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132202.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ins.2018.09.039</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV000954217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-0255(16)31931-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Debao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Backtracking search optimization algorithm based on knowledge learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a new evolutionary computation method, the structure of backtracking search optimization algorithm (BSA) is simple and the exploration capability of it is strong. However, the global performance of the BSA is significantly affected by mutation strategies and control parameters. Designing appropriate mutation strategies and control parameters is important to improve the global performance of the BSA. In this paper, an adaptive BSA with knowledge learning (KLBSA) is developed to improve the global performance of the BSA. In the method, an adaptive control parameter based on the global and local information of the swarms in the current iteration is designed to adjust the search step length of individuals, which helps to balance the exploration and exploitation abilities of the algorithm. Moreover, a new mutation strategy based on the guidance of different information is designed to improve the optimization ability of the algorithm. In addition, a multi-population strategy is implemented to thoroughly improve the searching ability of the algorithm for different searching areas. To this end, experiments on three groups of benchmark functions and three real-world problems are implemented to verify the performance of the proposed KLBSA algorithm. The results indicate that the proposed algorithm performs competitively and effectively when compared to some other evolutionary algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backtracking search optimization algorithm (BSA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive BSA with multiple sub-population (AMBSA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary computation (EC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Renquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Suwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Information sciences</subfield><subfield code="d">New York, NY : Elsevier Science Inc., 1968</subfield><subfield code="g">473, Seite 202-226</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271175850</subfield><subfield code="w">(DE-600)1478990-5</subfield><subfield code="w">(DE-576)078412293</subfield><subfield code="x">0020-0255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:473</subfield><subfield code="g">pages:202-226</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.71</subfield><subfield code="j">Theoretische Nachrichtentechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">473</subfield><subfield code="h">202-226</subfield></datafield></record></collection>
|
score |
7.398164 |