Metal oxide/TiO
Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feeds...
Ausführliche Beschreibung
Autor*in: |
Orojlou, Shahin Heydari [verfasserIn] Zargar, Behrooz [verfasserIn] Rastegarzadeh, Saadat [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of natural gas science and engineering - Amsterdam [u.a.] : Elsevier, 2009, 59, Seite 363-373 |
---|---|
Übergeordnetes Werk: |
volume:59 ; pages:363-373 |
DOI / URN: |
10.1016/j.jngse.2018.09.016 |
---|
Katalog-ID: |
ELV001007211 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001007211 | ||
003 | DE-627 | ||
005 | 20230524131244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jngse.2018.09.016 |2 doi | |
035 | |a (DE-627)ELV001007211 | ||
035 | |a (ELSEVIER)S1875-5100(18)30445-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DE-600 |
100 | 1 | |a Orojlou, Shahin Heydari |e verfasserin |4 aut | |
245 | 1 | 0 | |a Metal oxide/TiO |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. | ||
650 | 4 | |a Nanocomposites | |
650 | 4 | |a TiO | |
650 | 4 | |a Metal oxide | |
650 | 4 | |a Adsorptive desulfurization | |
650 | 4 | |a Hydrogen sulfide | |
700 | 1 | |a Zargar, Behrooz |e verfasserin |0 (orcid)0000-0003-4868-0845 |4 aut | |
700 | 1 | |a Rastegarzadeh, Saadat |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of natural gas science and engineering |d Amsterdam [u.a.] : Elsevier, 2009 |g 59, Seite 363-373 |h Online-Ressource |w (DE-627)608943231 |w (DE-600)2514802-3 |w (DE-576)311098436 |x 1875-5100 |7 nnns |
773 | 1 | 8 | |g volume:59 |g pages:363-373 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 59 |h 363-373 |
author_variant |
s h o sh sho b z bz s r sr |
---|---|
matchkey_str |
article:18755100:2018----::eaoi |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1016/j.jngse.2018.09.016 doi (DE-627)ELV001007211 (ELSEVIER)S1875-5100(18)30445-1 DE-627 ger DE-627 rda eng 660 DE-600 Orojlou, Shahin Heydari verfasserin aut Metal oxide/TiO 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. Nanocomposites TiO Metal oxide Adsorptive desulfurization Hydrogen sulfide Zargar, Behrooz verfasserin (orcid)0000-0003-4868-0845 aut Rastegarzadeh, Saadat verfasserin aut Enthalten in Journal of natural gas science and engineering Amsterdam [u.a.] : Elsevier, 2009 59, Seite 363-373 Online-Ressource (DE-627)608943231 (DE-600)2514802-3 (DE-576)311098436 1875-5100 nnns volume:59 pages:363-373 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 59 363-373 |
spelling |
10.1016/j.jngse.2018.09.016 doi (DE-627)ELV001007211 (ELSEVIER)S1875-5100(18)30445-1 DE-627 ger DE-627 rda eng 660 DE-600 Orojlou, Shahin Heydari verfasserin aut Metal oxide/TiO 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. Nanocomposites TiO Metal oxide Adsorptive desulfurization Hydrogen sulfide Zargar, Behrooz verfasserin (orcid)0000-0003-4868-0845 aut Rastegarzadeh, Saadat verfasserin aut Enthalten in Journal of natural gas science and engineering Amsterdam [u.a.] : Elsevier, 2009 59, Seite 363-373 Online-Ressource (DE-627)608943231 (DE-600)2514802-3 (DE-576)311098436 1875-5100 nnns volume:59 pages:363-373 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 59 363-373 |
allfields_unstemmed |
10.1016/j.jngse.2018.09.016 doi (DE-627)ELV001007211 (ELSEVIER)S1875-5100(18)30445-1 DE-627 ger DE-627 rda eng 660 DE-600 Orojlou, Shahin Heydari verfasserin aut Metal oxide/TiO 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. Nanocomposites TiO Metal oxide Adsorptive desulfurization Hydrogen sulfide Zargar, Behrooz verfasserin (orcid)0000-0003-4868-0845 aut Rastegarzadeh, Saadat verfasserin aut Enthalten in Journal of natural gas science and engineering Amsterdam [u.a.] : Elsevier, 2009 59, Seite 363-373 Online-Ressource (DE-627)608943231 (DE-600)2514802-3 (DE-576)311098436 1875-5100 nnns volume:59 pages:363-373 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 59 363-373 |
allfieldsGer |
10.1016/j.jngse.2018.09.016 doi (DE-627)ELV001007211 (ELSEVIER)S1875-5100(18)30445-1 DE-627 ger DE-627 rda eng 660 DE-600 Orojlou, Shahin Heydari verfasserin aut Metal oxide/TiO 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. Nanocomposites TiO Metal oxide Adsorptive desulfurization Hydrogen sulfide Zargar, Behrooz verfasserin (orcid)0000-0003-4868-0845 aut Rastegarzadeh, Saadat verfasserin aut Enthalten in Journal of natural gas science and engineering Amsterdam [u.a.] : Elsevier, 2009 59, Seite 363-373 Online-Ressource (DE-627)608943231 (DE-600)2514802-3 (DE-576)311098436 1875-5100 nnns volume:59 pages:363-373 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 59 363-373 |
allfieldsSound |
10.1016/j.jngse.2018.09.016 doi (DE-627)ELV001007211 (ELSEVIER)S1875-5100(18)30445-1 DE-627 ger DE-627 rda eng 660 DE-600 Orojlou, Shahin Heydari verfasserin aut Metal oxide/TiO 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. Nanocomposites TiO Metal oxide Adsorptive desulfurization Hydrogen sulfide Zargar, Behrooz verfasserin (orcid)0000-0003-4868-0845 aut Rastegarzadeh, Saadat verfasserin aut Enthalten in Journal of natural gas science and engineering Amsterdam [u.a.] : Elsevier, 2009 59, Seite 363-373 Online-Ressource (DE-627)608943231 (DE-600)2514802-3 (DE-576)311098436 1875-5100 nnns volume:59 pages:363-373 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 59 363-373 |
language |
English |
source |
Enthalten in Journal of natural gas science and engineering 59, Seite 363-373 volume:59 pages:363-373 |
sourceStr |
Enthalten in Journal of natural gas science and engineering 59, Seite 363-373 volume:59 pages:363-373 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nanocomposites TiO Metal oxide Adsorptive desulfurization Hydrogen sulfide |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of natural gas science and engineering |
authorswithroles_txt_mv |
Orojlou, Shahin Heydari @@aut@@ Zargar, Behrooz @@aut@@ Rastegarzadeh, Saadat @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
608943231 |
dewey-sort |
3660 |
id |
ELV001007211 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001007211</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jngse.2018.09.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001007211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1875-5100(18)30445-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orojlou, Shahin Heydari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal oxide/TiO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adsorptive desulfurization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen sulfide</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zargar, Behrooz</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4868-0845</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rastegarzadeh, Saadat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of natural gas science and engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2009</subfield><subfield code="g">59, Seite 363-373</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)608943231</subfield><subfield code="w">(DE-600)2514802-3</subfield><subfield code="w">(DE-576)311098436</subfield><subfield code="x">1875-5100</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">pages:363-373</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="h">363-373</subfield></datafield></record></collection>
|
author |
Orojlou, Shahin Heydari |
spellingShingle |
Orojlou, Shahin Heydari ddc 660 misc Nanocomposites misc TiO misc Metal oxide misc Adsorptive desulfurization misc Hydrogen sulfide Metal oxide/TiO |
authorStr |
Orojlou, Shahin Heydari |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608943231 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1875-5100 |
topic_title |
660 DE-600 Metal oxide/TiO Nanocomposites TiO Metal oxide Adsorptive desulfurization Hydrogen sulfide |
topic |
ddc 660 misc Nanocomposites misc TiO misc Metal oxide misc Adsorptive desulfurization misc Hydrogen sulfide |
topic_unstemmed |
ddc 660 misc Nanocomposites misc TiO misc Metal oxide misc Adsorptive desulfurization misc Hydrogen sulfide |
topic_browse |
ddc 660 misc Nanocomposites misc TiO misc Metal oxide misc Adsorptive desulfurization misc Hydrogen sulfide |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of natural gas science and engineering |
hierarchy_parent_id |
608943231 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of natural gas science and engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)608943231 (DE-600)2514802-3 (DE-576)311098436 |
title |
Metal oxide/TiO |
ctrlnum |
(DE-627)ELV001007211 (ELSEVIER)S1875-5100(18)30445-1 |
title_full |
Metal oxide/TiO |
author_sort |
Orojlou, Shahin Heydari |
journal |
Journal of natural gas science and engineering |
journalStr |
Journal of natural gas science and engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
363 |
author_browse |
Orojlou, Shahin Heydari Zargar, Behrooz Rastegarzadeh, Saadat |
container_volume |
59 |
class |
660 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Orojlou, Shahin Heydari |
doi_str_mv |
10.1016/j.jngse.2018.09.016 |
normlink |
(ORCID)0000-0003-4868-0845 |
normlink_prefix_str_mv |
(orcid)0000-0003-4868-0845 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
metal oxide/tio |
title_auth |
Metal oxide/TiO |
abstract |
Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. |
abstractGer |
Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. |
abstract_unstemmed |
Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Metal oxide/TiO |
remote_bool |
true |
author2 |
Zargar, Behrooz Rastegarzadeh, Saadat |
author2Str |
Zargar, Behrooz Rastegarzadeh, Saadat |
ppnlink |
608943231 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jngse.2018.09.016 |
up_date |
2024-07-06T19:54:43.789Z |
_version_ |
1803860766926831616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001007211</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jngse.2018.09.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001007211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1875-5100(18)30445-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orojlou, Shahin Heydari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal oxide/TiO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogen sulfide is a highly toxic and corrosive gas that is present in different environments such as hot coal gases. In order to have a clean atmosphere and prolong the life of industrial equipment and metallic catalysts, it is necessary to remove or decrease the concentration of this gas in feedstocks to sub parts per million before their use. To accomplish this task, various nanocomposite sorbents were studied for H2S removal at relatively high temperature. To this end, the NiO/TiO2, CuO/TiO2, and CoO/TiO2 nanocomposites were prepared through wet impregnation. X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) and N2 adsorption/desorption were used for characterizing the prepared nano sorbents. The H2S adsorption reaction experiments were performed at relatively high temperature and effects of the promoter to TiO2 ratio, sorbent mass and desulfurization temperature were studied. The results showed that at 480 °C, the CoO promoted TiO2 shows longer breakthrough time followed by NiO/TiO2 and CuO/TiO2 sorbents. The best results were obtained by using the promoter to TiO2 ratio of 2.5/5 among the ratios used. By decreasing the temperature and performing the experiments at 400 °C, the nickel oxide promoted TiO2 showed better results than the CoO/TiO2 suggesting the lower sulfidation activity of CoO promoter at this temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adsorptive desulfurization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen sulfide</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zargar, Behrooz</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4868-0845</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rastegarzadeh, Saadat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of natural gas science and engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2009</subfield><subfield code="g">59, Seite 363-373</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)608943231</subfield><subfield code="w">(DE-600)2514802-3</subfield><subfield code="w">(DE-576)311098436</subfield><subfield code="x">1875-5100</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">pages:363-373</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="h">363-373</subfield></datafield></record></collection>
|
score |
7.4028378 |