A combination strategy of random forest and back propagation network for variable selection in spectral calibration
Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be s...
Ausführliche Beschreibung
Autor*in: |
Chen, Huazhou [verfasserIn] Liu, Xiaoke [verfasserIn] Jia, Zhen [verfasserIn] Liu, Zhenyao [verfasserIn] Shi, Kai [verfasserIn] Cai, Ken [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chemometrics and intelligent laboratory systems - Amsterdam [u.a.] : Elsevier Science, 1986, 182, Seite 101-108 |
---|---|
Übergeordnetes Werk: |
volume:182 ; pages:101-108 |
DOI / URN: |
10.1016/j.chemolab.2018.09.002 |
---|
Katalog-ID: |
ELV001009699 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001009699 | ||
003 | DE-627 | ||
005 | 20230524162841.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemolab.2018.09.002 |2 doi | |
035 | |a (DE-627)ELV001009699 | ||
035 | |a (ELSEVIER)S0169-7439(18)30097-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.07 |2 bkl | ||
084 | |a 35.05 |2 bkl | ||
100 | 1 | |a Chen, Huazhou |e verfasserin |4 aut | |
245 | 1 | 0 | |a A combination strategy of random forest and back propagation network for variable selection in spectral calibration |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. | ||
650 | 4 | |a Variable selection | |
650 | 4 | |a Random forest | |
650 | 4 | |a Gini index | |
650 | 4 | |a Back propagation network | |
650 | 4 | |a Fourier transform near infrared spectroscopy | |
650 | 4 | |a Soil organic carbon | |
700 | 1 | |a Liu, Xiaoke |e verfasserin |4 aut | |
700 | 1 | |a Jia, Zhen |e verfasserin |4 aut | |
700 | 1 | |a Liu, Zhenyao |e verfasserin |4 aut | |
700 | 1 | |a Shi, Kai |e verfasserin |4 aut | |
700 | 1 | |a Cai, Ken |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemometrics and intelligent laboratory systems |d Amsterdam [u.a.] : Elsevier Science, 1986 |g 182, Seite 101-108 |h Online-Ressource |w (DE-627)320603512 |w (DE-600)2020467-X |w (DE-576)255554133 |x 0169-7439 |7 nnns |
773 | 1 | 8 | |g volume:182 |g pages:101-108 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.07 |j Chemisches Labor |j chemische Methoden |
936 | b | k | |a 35.05 |j Mathematische Chemie |j chemische Statistik |
951 | |a AR | ||
952 | |d 182 |h 101-108 |
author_variant |
h c hc x l xl z j zj z l zl k s ks k c kc |
---|---|
matchkey_str |
article:01697439:2018----::cmiaintaeyfadmoetnbcpoaainewrfraibeee |
hierarchy_sort_str |
2018 |
bklnumber |
35.07 35.05 |
publishDate |
2018 |
allfields |
10.1016/j.chemolab.2018.09.002 doi (DE-627)ELV001009699 (ELSEVIER)S0169-7439(18)30097-2 DE-627 ger DE-627 rda eng 540 DE-600 35.07 bkl 35.05 bkl Chen, Huazhou verfasserin aut A combination strategy of random forest and back propagation network for variable selection in spectral calibration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. Variable selection Random forest Gini index Back propagation network Fourier transform near infrared spectroscopy Soil organic carbon Liu, Xiaoke verfasserin aut Jia, Zhen verfasserin aut Liu, Zhenyao verfasserin aut Shi, Kai verfasserin aut Cai, Ken verfasserin aut Enthalten in Chemometrics and intelligent laboratory systems Amsterdam [u.a.] : Elsevier Science, 1986 182, Seite 101-108 Online-Ressource (DE-627)320603512 (DE-600)2020467-X (DE-576)255554133 0169-7439 nnns volume:182 pages:101-108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.07 Chemisches Labor chemische Methoden 35.05 Mathematische Chemie chemische Statistik AR 182 101-108 |
spelling |
10.1016/j.chemolab.2018.09.002 doi (DE-627)ELV001009699 (ELSEVIER)S0169-7439(18)30097-2 DE-627 ger DE-627 rda eng 540 DE-600 35.07 bkl 35.05 bkl Chen, Huazhou verfasserin aut A combination strategy of random forest and back propagation network for variable selection in spectral calibration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. Variable selection Random forest Gini index Back propagation network Fourier transform near infrared spectroscopy Soil organic carbon Liu, Xiaoke verfasserin aut Jia, Zhen verfasserin aut Liu, Zhenyao verfasserin aut Shi, Kai verfasserin aut Cai, Ken verfasserin aut Enthalten in Chemometrics and intelligent laboratory systems Amsterdam [u.a.] : Elsevier Science, 1986 182, Seite 101-108 Online-Ressource (DE-627)320603512 (DE-600)2020467-X (DE-576)255554133 0169-7439 nnns volume:182 pages:101-108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.07 Chemisches Labor chemische Methoden 35.05 Mathematische Chemie chemische Statistik AR 182 101-108 |
allfields_unstemmed |
10.1016/j.chemolab.2018.09.002 doi (DE-627)ELV001009699 (ELSEVIER)S0169-7439(18)30097-2 DE-627 ger DE-627 rda eng 540 DE-600 35.07 bkl 35.05 bkl Chen, Huazhou verfasserin aut A combination strategy of random forest and back propagation network for variable selection in spectral calibration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. Variable selection Random forest Gini index Back propagation network Fourier transform near infrared spectroscopy Soil organic carbon Liu, Xiaoke verfasserin aut Jia, Zhen verfasserin aut Liu, Zhenyao verfasserin aut Shi, Kai verfasserin aut Cai, Ken verfasserin aut Enthalten in Chemometrics and intelligent laboratory systems Amsterdam [u.a.] : Elsevier Science, 1986 182, Seite 101-108 Online-Ressource (DE-627)320603512 (DE-600)2020467-X (DE-576)255554133 0169-7439 nnns volume:182 pages:101-108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.07 Chemisches Labor chemische Methoden 35.05 Mathematische Chemie chemische Statistik AR 182 101-108 |
allfieldsGer |
10.1016/j.chemolab.2018.09.002 doi (DE-627)ELV001009699 (ELSEVIER)S0169-7439(18)30097-2 DE-627 ger DE-627 rda eng 540 DE-600 35.07 bkl 35.05 bkl Chen, Huazhou verfasserin aut A combination strategy of random forest and back propagation network for variable selection in spectral calibration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. Variable selection Random forest Gini index Back propagation network Fourier transform near infrared spectroscopy Soil organic carbon Liu, Xiaoke verfasserin aut Jia, Zhen verfasserin aut Liu, Zhenyao verfasserin aut Shi, Kai verfasserin aut Cai, Ken verfasserin aut Enthalten in Chemometrics and intelligent laboratory systems Amsterdam [u.a.] : Elsevier Science, 1986 182, Seite 101-108 Online-Ressource (DE-627)320603512 (DE-600)2020467-X (DE-576)255554133 0169-7439 nnns volume:182 pages:101-108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.07 Chemisches Labor chemische Methoden 35.05 Mathematische Chemie chemische Statistik AR 182 101-108 |
allfieldsSound |
10.1016/j.chemolab.2018.09.002 doi (DE-627)ELV001009699 (ELSEVIER)S0169-7439(18)30097-2 DE-627 ger DE-627 rda eng 540 DE-600 35.07 bkl 35.05 bkl Chen, Huazhou verfasserin aut A combination strategy of random forest and back propagation network for variable selection in spectral calibration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. Variable selection Random forest Gini index Back propagation network Fourier transform near infrared spectroscopy Soil organic carbon Liu, Xiaoke verfasserin aut Jia, Zhen verfasserin aut Liu, Zhenyao verfasserin aut Shi, Kai verfasserin aut Cai, Ken verfasserin aut Enthalten in Chemometrics and intelligent laboratory systems Amsterdam [u.a.] : Elsevier Science, 1986 182, Seite 101-108 Online-Ressource (DE-627)320603512 (DE-600)2020467-X (DE-576)255554133 0169-7439 nnns volume:182 pages:101-108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.07 Chemisches Labor chemische Methoden 35.05 Mathematische Chemie chemische Statistik AR 182 101-108 |
language |
English |
source |
Enthalten in Chemometrics and intelligent laboratory systems 182, Seite 101-108 volume:182 pages:101-108 |
sourceStr |
Enthalten in Chemometrics and intelligent laboratory systems 182, Seite 101-108 volume:182 pages:101-108 |
format_phy_str_mv |
Article |
bklname |
Chemisches Labor chemische Methoden Mathematische Chemie chemische Statistik |
institution |
findex.gbv.de |
topic_facet |
Variable selection Random forest Gini index Back propagation network Fourier transform near infrared spectroscopy Soil organic carbon |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Chemometrics and intelligent laboratory systems |
authorswithroles_txt_mv |
Chen, Huazhou @@aut@@ Liu, Xiaoke @@aut@@ Jia, Zhen @@aut@@ Liu, Zhenyao @@aut@@ Shi, Kai @@aut@@ Cai, Ken @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320603512 |
dewey-sort |
3540 |
id |
ELV001009699 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001009699</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemolab.2018.09.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001009699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-7439(18)30097-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Huazhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A combination strategy of random forest and back propagation network for variable selection in spectral calibration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gini index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Back propagation network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transform near infrared spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil organic carbon</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhenyao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Ken</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemometrics and intelligent laboratory systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1986</subfield><subfield code="g">182, Seite 101-108</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320603512</subfield><subfield code="w">(DE-600)2020467-X</subfield><subfield code="w">(DE-576)255554133</subfield><subfield code="x">0169-7439</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:182</subfield><subfield code="g">pages:101-108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.05</subfield><subfield code="j">Mathematische Chemie</subfield><subfield code="j">chemische Statistik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">182</subfield><subfield code="h">101-108</subfield></datafield></record></collection>
|
author |
Chen, Huazhou |
spellingShingle |
Chen, Huazhou ddc 540 bkl 35.07 bkl 35.05 misc Variable selection misc Random forest misc Gini index misc Back propagation network misc Fourier transform near infrared spectroscopy misc Soil organic carbon A combination strategy of random forest and back propagation network for variable selection in spectral calibration |
authorStr |
Chen, Huazhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320603512 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0169-7439 |
topic_title |
540 DE-600 35.07 bkl 35.05 bkl A combination strategy of random forest and back propagation network for variable selection in spectral calibration Variable selection Random forest Gini index Back propagation network Fourier transform near infrared spectroscopy Soil organic carbon |
topic |
ddc 540 bkl 35.07 bkl 35.05 misc Variable selection misc Random forest misc Gini index misc Back propagation network misc Fourier transform near infrared spectroscopy misc Soil organic carbon |
topic_unstemmed |
ddc 540 bkl 35.07 bkl 35.05 misc Variable selection misc Random forest misc Gini index misc Back propagation network misc Fourier transform near infrared spectroscopy misc Soil organic carbon |
topic_browse |
ddc 540 bkl 35.07 bkl 35.05 misc Variable selection misc Random forest misc Gini index misc Back propagation network misc Fourier transform near infrared spectroscopy misc Soil organic carbon |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemometrics and intelligent laboratory systems |
hierarchy_parent_id |
320603512 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Chemometrics and intelligent laboratory systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320603512 (DE-600)2020467-X (DE-576)255554133 |
title |
A combination strategy of random forest and back propagation network for variable selection in spectral calibration |
ctrlnum |
(DE-627)ELV001009699 (ELSEVIER)S0169-7439(18)30097-2 |
title_full |
A combination strategy of random forest and back propagation network for variable selection in spectral calibration |
author_sort |
Chen, Huazhou |
journal |
Chemometrics and intelligent laboratory systems |
journalStr |
Chemometrics and intelligent laboratory systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
101 |
author_browse |
Chen, Huazhou Liu, Xiaoke Jia, Zhen Liu, Zhenyao Shi, Kai Cai, Ken |
container_volume |
182 |
class |
540 DE-600 35.07 bkl 35.05 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Huazhou |
doi_str_mv |
10.1016/j.chemolab.2018.09.002 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
a combination strategy of random forest and back propagation network for variable selection in spectral calibration |
title_auth |
A combination strategy of random forest and back propagation network for variable selection in spectral calibration |
abstract |
Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. |
abstractGer |
Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. |
abstract_unstemmed |
Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A combination strategy of random forest and back propagation network for variable selection in spectral calibration |
remote_bool |
true |
author2 |
Liu, Xiaoke Jia, Zhen Liu, Zhenyao Shi, Kai Cai, Ken |
author2Str |
Liu, Xiaoke Jia, Zhen Liu, Zhenyao Shi, Kai Cai, Ken |
ppnlink |
320603512 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.chemolab.2018.09.002 |
up_date |
2024-07-06T19:55:14.602Z |
_version_ |
1803860799237652480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001009699</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemolab.2018.09.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001009699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-7439(18)30097-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Huazhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A combination strategy of random forest and back propagation network for variable selection in spectral calibration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Random forest (RF) and neural network have received significant interest for statistical data analysis as a result of their good predictive performance and attractive analytical properties. When developing a RF regression model for spectral analysis, some informative wavelengths are supposed to be selected so as to reduce dimension effectively and improve interpretability. Whereas a neural network has the merit of restoring high signals in data. A chemometric strategy was proposed in this paper, implemented through the combined use of the RF algorithm and back propagation (BP) network. The RF-selected informative wavelengths were further refined by a moderate 3-layer BP network, where the number of hidden nodes was tunable and finally determined by searching the minimum output error. The BP network was trained with the combined running of RF to generate a new comprehensive variable, so that a renewal informative-plus-net variable group could be produced. This renewed group of variables (or this selected group of variables) was used in a multiple linear regression model to predict the spectral analytical ability in quantitatively determining the content of the target analyte. The application case was based on the Fourier transform near infrared dataset of soil samples, aiming to chemometrically determine the content of the nutritional organic carbon. The prediction results indicated that the proposed strategy of combining RF and BP network can improve prediction accuracy and enhance model interpretability in comparison with the general RF method and the conventional benchmark partial least squares regression. The methodology presented here is of practical significance and has wide application in rapid nutrition determination in the development of precise agriculture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gini index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Back propagation network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transform near infrared spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil organic carbon</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhenyao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Ken</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemometrics and intelligent laboratory systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1986</subfield><subfield code="g">182, Seite 101-108</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320603512</subfield><subfield code="w">(DE-600)2020467-X</subfield><subfield code="w">(DE-576)255554133</subfield><subfield code="x">0169-7439</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:182</subfield><subfield code="g">pages:101-108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.05</subfield><subfield code="j">Mathematische Chemie</subfield><subfield code="j">chemische Statistik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">182</subfield><subfield code="h">101-108</subfield></datafield></record></collection>
|
score |
7.4013557 |