Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design
System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g...
Ausführliche Beschreibung
Autor*in: |
Acuña, David E. [verfasserIn] Orchard, Marcos E. [verfasserIn] Saona, Raimundo J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Prognostics and health management |
---|
Übergeordnetes Werk: |
Enthalten in: Applied soft computing - Amsterdam [u.a.] : Elsevier Science, 2001, 72, Seite 647-665 |
---|---|
Übergeordnetes Werk: |
volume:72 ; pages:647-665 |
DOI / URN: |
10.1016/j.asoc.2018.01.033 |
---|
Katalog-ID: |
ELV001014021 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001014021 | ||
003 | DE-627 | ||
005 | 20230524152329.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.asoc.2018.01.033 |2 doi | |
035 | |a (DE-627)ELV001014021 | ||
035 | |a (ELSEVIER)S1568-4946(18)30039-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Acuña, David E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. | ||
650 | 4 | |a Prognostics and health management | |
650 | 4 | |a Prognostic algorithm design | |
650 | 4 | |a Bayesian Cramér-Rao Lower Bounds | |
650 | 4 | |a Particle filters | |
650 | 4 | |a Battery end-of- discharge | |
700 | 1 | |a Orchard, Marcos E. |e verfasserin |4 aut | |
700 | 1 | |a Saona, Raimundo J. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied soft computing |d Amsterdam [u.a.] : Elsevier Science, 2001 |g 72, Seite 647-665 |h Online-Ressource |w (DE-627)334375754 |w (DE-600)2057709-6 |w (DE-576)256145733 |x 1568-4946 |7 nnns |
773 | 1 | 8 | |g volume:72 |g pages:647-665 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |
951 | |a AR | ||
952 | |d 72 |h 647-665 |
author_variant |
d e a de dea m e o me meo r j s rj rjs |
---|---|
matchkey_str |
article:15684946:2018----::odtoapeitvbysacaralwronsopon |
hierarchy_sort_str |
2018 |
bklnumber |
54.00 |
publishDate |
2018 |
allfields |
10.1016/j.asoc.2018.01.033 doi (DE-627)ELV001014021 (ELSEVIER)S1568-4946(18)30039-5 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Acuña, David E. verfasserin aut Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. Prognostics and health management Prognostic algorithm design Bayesian Cramér-Rao Lower Bounds Particle filters Battery end-of- discharge Orchard, Marcos E. verfasserin aut Saona, Raimundo J. verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 72, Seite 647-665 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:72 pages:647-665 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 72 647-665 |
spelling |
10.1016/j.asoc.2018.01.033 doi (DE-627)ELV001014021 (ELSEVIER)S1568-4946(18)30039-5 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Acuña, David E. verfasserin aut Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. Prognostics and health management Prognostic algorithm design Bayesian Cramér-Rao Lower Bounds Particle filters Battery end-of- discharge Orchard, Marcos E. verfasserin aut Saona, Raimundo J. verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 72, Seite 647-665 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:72 pages:647-665 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 72 647-665 |
allfields_unstemmed |
10.1016/j.asoc.2018.01.033 doi (DE-627)ELV001014021 (ELSEVIER)S1568-4946(18)30039-5 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Acuña, David E. verfasserin aut Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. Prognostics and health management Prognostic algorithm design Bayesian Cramér-Rao Lower Bounds Particle filters Battery end-of- discharge Orchard, Marcos E. verfasserin aut Saona, Raimundo J. verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 72, Seite 647-665 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:72 pages:647-665 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 72 647-665 |
allfieldsGer |
10.1016/j.asoc.2018.01.033 doi (DE-627)ELV001014021 (ELSEVIER)S1568-4946(18)30039-5 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Acuña, David E. verfasserin aut Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. Prognostics and health management Prognostic algorithm design Bayesian Cramér-Rao Lower Bounds Particle filters Battery end-of- discharge Orchard, Marcos E. verfasserin aut Saona, Raimundo J. verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 72, Seite 647-665 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:72 pages:647-665 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 72 647-665 |
allfieldsSound |
10.1016/j.asoc.2018.01.033 doi (DE-627)ELV001014021 (ELSEVIER)S1568-4946(18)30039-5 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Acuña, David E. verfasserin aut Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. Prognostics and health management Prognostic algorithm design Bayesian Cramér-Rao Lower Bounds Particle filters Battery end-of- discharge Orchard, Marcos E. verfasserin aut Saona, Raimundo J. verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 72, Seite 647-665 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:72 pages:647-665 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 72 647-665 |
language |
English |
source |
Enthalten in Applied soft computing 72, Seite 647-665 volume:72 pages:647-665 |
sourceStr |
Enthalten in Applied soft computing 72, Seite 647-665 volume:72 pages:647-665 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Prognostics and health management Prognostic algorithm design Bayesian Cramér-Rao Lower Bounds Particle filters Battery end-of- discharge |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Applied soft computing |
authorswithroles_txt_mv |
Acuña, David E. @@aut@@ Orchard, Marcos E. @@aut@@ Saona, Raimundo J. @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
334375754 |
dewey-sort |
14 |
id |
ELV001014021 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001014021</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152329.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.asoc.2018.01.033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001014021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1568-4946(18)30039-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Acuña, David E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognostics and health management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognostic algorithm design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian Cramér-Rao Lower Bounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle filters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Battery end-of- discharge</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orchard, Marcos E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saona, Raimundo J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied soft computing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">72, Seite 647-665</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)334375754</subfield><subfield code="w">(DE-600)2057709-6</subfield><subfield code="w">(DE-576)256145733</subfield><subfield code="x">1568-4946</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:72</subfield><subfield code="g">pages:647-665</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">72</subfield><subfield code="h">647-665</subfield></datafield></record></collection>
|
author |
Acuña, David E. |
spellingShingle |
Acuña, David E. ddc 004 bkl 54.00 misc Prognostics and health management misc Prognostic algorithm design misc Bayesian Cramér-Rao Lower Bounds misc Particle filters misc Battery end-of- discharge Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design |
authorStr |
Acuña, David E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)334375754 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1568-4946 |
topic_title |
004 DE-600 54.00 bkl Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design Prognostics and health management Prognostic algorithm design Bayesian Cramér-Rao Lower Bounds Particle filters Battery end-of- discharge |
topic |
ddc 004 bkl 54.00 misc Prognostics and health management misc Prognostic algorithm design misc Bayesian Cramér-Rao Lower Bounds misc Particle filters misc Battery end-of- discharge |
topic_unstemmed |
ddc 004 bkl 54.00 misc Prognostics and health management misc Prognostic algorithm design misc Bayesian Cramér-Rao Lower Bounds misc Particle filters misc Battery end-of- discharge |
topic_browse |
ddc 004 bkl 54.00 misc Prognostics and health management misc Prognostic algorithm design misc Bayesian Cramér-Rao Lower Bounds misc Particle filters misc Battery end-of- discharge |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied soft computing |
hierarchy_parent_id |
334375754 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Applied soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 |
title |
Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design |
ctrlnum |
(DE-627)ELV001014021 (ELSEVIER)S1568-4946(18)30039-5 |
title_full |
Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design |
author_sort |
Acuña, David E. |
journal |
Applied soft computing |
journalStr |
Applied soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
647 |
author_browse |
Acuña, David E. Orchard, Marcos E. Saona, Raimundo J. |
container_volume |
72 |
class |
004 DE-600 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Acuña, David E. |
doi_str_mv |
10.1016/j.asoc.2018.01.033 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
conditional predictive bayesian cramér-rao lower bounds for prognostic algorithms design |
title_auth |
Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design |
abstract |
System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. |
abstractGer |
System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. |
abstract_unstemmed |
System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design |
remote_bool |
true |
author2 |
Orchard, Marcos E. Saona, Raimundo J. |
author2Str |
Orchard, Marcos E. Saona, Raimundo J. |
ppnlink |
334375754 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.asoc.2018.01.033 |
up_date |
2024-07-06T19:56:09.613Z |
_version_ |
1803860856919818240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001014021</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152329.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.asoc.2018.01.033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001014021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1568-4946(18)30039-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Acuña, David E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conditional predictive Bayesian Cramér-Rao Lower Bounds for prognostic algorithms design</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">System states are related, directly or indirectly, to health condition indicators. Indeed, critical system failures can be efficiently characterized through a state space manifold. This fact has encouraged the development of a series of failure prognostic frameworks based on Bayesian processors (e.g. particle or unscented Kalman filters), which efficiently help to estimate the Time-of-Failure (ToF) probability distribution in nonlinear, non- Gaussian, systems with uncertain future operating profiles. However, it is still unclear how to determine the efficacy of these methods, since the Prognostics and Health Management (PHM) community has not developed rigorous theoretical frameworks that could help to define proper performance indicators. In this regard, this article introduces novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing a formal mathematical definition of the prognostic problem. Furthermore, we propose a novel step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognostics and health management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognostic algorithm design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian Cramér-Rao Lower Bounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle filters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Battery end-of- discharge</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orchard, Marcos E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saona, Raimundo J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied soft computing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">72, Seite 647-665</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)334375754</subfield><subfield code="w">(DE-600)2057709-6</subfield><subfield code="w">(DE-576)256145733</subfield><subfield code="x">1568-4946</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:72</subfield><subfield code="g">pages:647-665</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">72</subfield><subfield code="h">647-665</subfield></datafield></record></collection>
|
score |
7.4027443 |