Damage evaluations of fire-damaged RPC-FST columns under blast loading
Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the f...
Ausführliche Beschreibung
Autor*in: |
Chen, Wanxiang [verfasserIn] Pan, Jianjun [verfasserIn] Guo, Zhikun [verfasserIn] Zou, Huihui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Thin-walled structures - Amsterdam [u.a.] : Elsevier Science, 1983, 134, Seite 319-332 |
---|---|
Übergeordnetes Werk: |
volume:134 ; pages:319-332 |
DOI / URN: |
10.1016/j.tws.2018.10.031 |
---|
Katalog-ID: |
ELV001124234 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001124234 | ||
003 | DE-627 | ||
005 | 20230524140927.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tws.2018.10.031 |2 doi | |
035 | |a (DE-627)ELV001124234 | ||
035 | |a (ELSEVIER)S0263-8231(18)30530-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 50.31 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Chen, Wanxiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Damage evaluations of fire-damaged RPC-FST columns under blast loading |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. | ||
650 | 4 | |a Reactive Powder Concrete-Filled Steel Tube (RPC-FST) | |
650 | 4 | |a Standard fire | |
650 | 4 | |a Blast-resistant test | |
650 | 4 | |a P-I diagram | |
650 | 4 | |a Damage evaluation | |
700 | 1 | |a Pan, Jianjun |e verfasserin |4 aut | |
700 | 1 | |a Guo, Zhikun |e verfasserin |4 aut | |
700 | 1 | |a Zou, Huihui |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Thin-walled structures |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 134, Seite 319-332 |h Online-Ressource |w (DE-627)320423425 |w (DE-600)2002844-1 |w (DE-576)259484512 |7 nnns |
773 | 1 | 8 | |g volume:134 |g pages:319-332 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.31 |j Technische Mechanik |
936 | b | k | |a 56.11 |j Baukonstruktion |
951 | |a AR | ||
952 | |d 134 |h 319-332 |
author_variant |
w c wc j p jp z g zg h z hz |
---|---|
matchkey_str |
chenwanxiangpanjianjunguozhikunzouhuihui:2018----:aaevlainofrdmgdpftounu |
hierarchy_sort_str |
2018 |
bklnumber |
50.31 56.11 |
publishDate |
2018 |
allfields |
10.1016/j.tws.2018.10.031 doi (DE-627)ELV001124234 (ELSEVIER)S0263-8231(18)30530-5 DE-627 ger DE-627 rda eng 690 DE-600 50.31 bkl 56.11 bkl Chen, Wanxiang verfasserin aut Damage evaluations of fire-damaged RPC-FST columns under blast loading 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. Reactive Powder Concrete-Filled Steel Tube (RPC-FST) Standard fire Blast-resistant test P-I diagram Damage evaluation Pan, Jianjun verfasserin aut Guo, Zhikun verfasserin aut Zou, Huihui verfasserin aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 134, Seite 319-332 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:134 pages:319-332 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 56.11 Baukonstruktion AR 134 319-332 |
spelling |
10.1016/j.tws.2018.10.031 doi (DE-627)ELV001124234 (ELSEVIER)S0263-8231(18)30530-5 DE-627 ger DE-627 rda eng 690 DE-600 50.31 bkl 56.11 bkl Chen, Wanxiang verfasserin aut Damage evaluations of fire-damaged RPC-FST columns under blast loading 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. Reactive Powder Concrete-Filled Steel Tube (RPC-FST) Standard fire Blast-resistant test P-I diagram Damage evaluation Pan, Jianjun verfasserin aut Guo, Zhikun verfasserin aut Zou, Huihui verfasserin aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 134, Seite 319-332 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:134 pages:319-332 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 56.11 Baukonstruktion AR 134 319-332 |
allfields_unstemmed |
10.1016/j.tws.2018.10.031 doi (DE-627)ELV001124234 (ELSEVIER)S0263-8231(18)30530-5 DE-627 ger DE-627 rda eng 690 DE-600 50.31 bkl 56.11 bkl Chen, Wanxiang verfasserin aut Damage evaluations of fire-damaged RPC-FST columns under blast loading 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. Reactive Powder Concrete-Filled Steel Tube (RPC-FST) Standard fire Blast-resistant test P-I diagram Damage evaluation Pan, Jianjun verfasserin aut Guo, Zhikun verfasserin aut Zou, Huihui verfasserin aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 134, Seite 319-332 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:134 pages:319-332 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 56.11 Baukonstruktion AR 134 319-332 |
allfieldsGer |
10.1016/j.tws.2018.10.031 doi (DE-627)ELV001124234 (ELSEVIER)S0263-8231(18)30530-5 DE-627 ger DE-627 rda eng 690 DE-600 50.31 bkl 56.11 bkl Chen, Wanxiang verfasserin aut Damage evaluations of fire-damaged RPC-FST columns under blast loading 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. Reactive Powder Concrete-Filled Steel Tube (RPC-FST) Standard fire Blast-resistant test P-I diagram Damage evaluation Pan, Jianjun verfasserin aut Guo, Zhikun verfasserin aut Zou, Huihui verfasserin aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 134, Seite 319-332 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:134 pages:319-332 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 56.11 Baukonstruktion AR 134 319-332 |
allfieldsSound |
10.1016/j.tws.2018.10.031 doi (DE-627)ELV001124234 (ELSEVIER)S0263-8231(18)30530-5 DE-627 ger DE-627 rda eng 690 DE-600 50.31 bkl 56.11 bkl Chen, Wanxiang verfasserin aut Damage evaluations of fire-damaged RPC-FST columns under blast loading 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. Reactive Powder Concrete-Filled Steel Tube (RPC-FST) Standard fire Blast-resistant test P-I diagram Damage evaluation Pan, Jianjun verfasserin aut Guo, Zhikun verfasserin aut Zou, Huihui verfasserin aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 134, Seite 319-332 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:134 pages:319-332 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 56.11 Baukonstruktion AR 134 319-332 |
language |
English |
source |
Enthalten in Thin-walled structures 134, Seite 319-332 volume:134 pages:319-332 |
sourceStr |
Enthalten in Thin-walled structures 134, Seite 319-332 volume:134 pages:319-332 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
Reactive Powder Concrete-Filled Steel Tube (RPC-FST) Standard fire Blast-resistant test P-I diagram Damage evaluation |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Thin-walled structures |
authorswithroles_txt_mv |
Chen, Wanxiang @@aut@@ Pan, Jianjun @@aut@@ Guo, Zhikun @@aut@@ Zou, Huihui @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320423425 |
dewey-sort |
3690 |
id |
ELV001124234 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001124234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524140927.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tws.2018.10.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001124234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-8231(18)30530-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Wanxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Damage evaluations of fire-damaged RPC-FST columns under blast loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive Powder Concrete-Filled Steel Tube (RPC-FST)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Standard fire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blast-resistant test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P-I diagram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage evaluation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Jianjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Zhikun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Huihui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Thin-walled structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">134, Seite 319-332</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423425</subfield><subfield code="w">(DE-600)2002844-1</subfield><subfield code="w">(DE-576)259484512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:134</subfield><subfield code="g">pages:319-332</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">134</subfield><subfield code="h">319-332</subfield></datafield></record></collection>
|
author |
Chen, Wanxiang |
spellingShingle |
Chen, Wanxiang ddc 690 bkl 50.31 bkl 56.11 misc Reactive Powder Concrete-Filled Steel Tube (RPC-FST) misc Standard fire misc Blast-resistant test misc P-I diagram misc Damage evaluation Damage evaluations of fire-damaged RPC-FST columns under blast loading |
authorStr |
Chen, Wanxiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320423425 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 DE-600 50.31 bkl 56.11 bkl Damage evaluations of fire-damaged RPC-FST columns under blast loading Reactive Powder Concrete-Filled Steel Tube (RPC-FST) Standard fire Blast-resistant test P-I diagram Damage evaluation |
topic |
ddc 690 bkl 50.31 bkl 56.11 misc Reactive Powder Concrete-Filled Steel Tube (RPC-FST) misc Standard fire misc Blast-resistant test misc P-I diagram misc Damage evaluation |
topic_unstemmed |
ddc 690 bkl 50.31 bkl 56.11 misc Reactive Powder Concrete-Filled Steel Tube (RPC-FST) misc Standard fire misc Blast-resistant test misc P-I diagram misc Damage evaluation |
topic_browse |
ddc 690 bkl 50.31 bkl 56.11 misc Reactive Powder Concrete-Filled Steel Tube (RPC-FST) misc Standard fire misc Blast-resistant test misc P-I diagram misc Damage evaluation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Thin-walled structures |
hierarchy_parent_id |
320423425 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Thin-walled structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 |
title |
Damage evaluations of fire-damaged RPC-FST columns under blast loading |
ctrlnum |
(DE-627)ELV001124234 (ELSEVIER)S0263-8231(18)30530-5 |
title_full |
Damage evaluations of fire-damaged RPC-FST columns under blast loading |
author_sort |
Chen, Wanxiang |
journal |
Thin-walled structures |
journalStr |
Thin-walled structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
319 |
author_browse |
Chen, Wanxiang Pan, Jianjun Guo, Zhikun Zou, Huihui |
container_volume |
134 |
class |
690 DE-600 50.31 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Wanxiang |
doi_str_mv |
10.1016/j.tws.2018.10.031 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
damage evaluations of fire-damaged rpc-fst columns under blast loading |
title_auth |
Damage evaluations of fire-damaged RPC-FST columns under blast loading |
abstract |
Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. |
abstractGer |
Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. |
abstract_unstemmed |
Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Damage evaluations of fire-damaged RPC-FST columns under blast loading |
remote_bool |
true |
author2 |
Pan, Jianjun Guo, Zhikun Zou, Huihui |
author2Str |
Pan, Jianjun Guo, Zhikun Zou, Huihui |
ppnlink |
320423425 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.tws.2018.10.031 |
up_date |
2024-07-06T20:18:38.820Z |
_version_ |
1803862271664848896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001124234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524140927.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tws.2018.10.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001124234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-8231(18)30530-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Wanxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Damage evaluations of fire-damaged RPC-FST columns under blast loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reactive Powder Concrete-Filled Steel Tube (RPC-FST) is a new composite section with ultra-high strength, good plasticity and ductility to withstand blast loading. This paper is devoted to introduce an analytical method for evaluating the damage level of RPC-FST column suffered fire attack and the following blast load. The damage indexes of RPC-FST column has experienced ISO-834 standard fire and subsequent blast load are predicted using Pressure-Impulse (P-I) diagram. The analytical approaches are proposed based on equivalent Single Degree of Freedom (SDOF) model, in which the damping dissipation, thermal effect and axial load are included. In order to clarify the influences of temperature distribution and explosive charge on the damage index, an inclusive P-I function, characterized by three variables: pressure, impulse and fire duration, is presented. Then blast-resistant results of four fire-damaged RPC-FST columns are employed to validate the reliabilities of presented method. Parametric analysis is conducted to investigate the impacts of damping ratio and ductility ratio on the structural damages. It is demonstrated that a larger damping would lead to better structural blast-resistance. The asymptote value of quasi-static zone tends to smaller as the ductility ratio increases, either the asymptote value of impulse zone, which results in a larger safe area for structural member. In addition, the damaged level is governed by impulse load as scaled distance decreases. The analytical damage indexes are well validated by experimental data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive Powder Concrete-Filled Steel Tube (RPC-FST)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Standard fire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blast-resistant test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P-I diagram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage evaluation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Jianjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Zhikun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Huihui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Thin-walled structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">134, Seite 319-332</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423425</subfield><subfield code="w">(DE-600)2002844-1</subfield><subfield code="w">(DE-576)259484512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:134</subfield><subfield code="g">pages:319-332</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">134</subfield><subfield code="h">319-332</subfield></datafield></record></collection>
|
score |
7.4023542 |