Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48
This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was ch...
Ausführliche Beschreibung
Autor*in: |
Li, Shangyi [verfasserIn] Tang, Yiming [verfasserIn] Zhang, Jingxian [verfasserIn] Hao, Wenjing [verfasserIn] Chen, Weirui [verfasserIn] Gu, Fenglong [verfasserIn] Hu, Zhe [verfasserIn] Li, Laisheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Separation and purification technology - Amsterdam [u.a.] : Elsevier Science, 1997, 211, Seite 684-696 |
---|---|
Übergeordnetes Werk: |
volume:211 ; pages:684-696 |
DOI / URN: |
10.1016/j.seppur.2018.10.031 |
---|
Katalog-ID: |
ELV001244051 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001244051 | ||
003 | DE-627 | ||
005 | 20230524135326.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.seppur.2018.10.031 |2 doi | |
035 | |a (DE-627)ELV001244051 | ||
035 | |a (ELSEVIER)S1383-5866(18)32942-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 58.11 |2 bkl | ||
084 | |a 58.13 |2 bkl | ||
100 | 1 | |a Li, Shangyi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. | ||
650 | 4 | |a Cu-MCM-48 | |
650 | 4 | |a Heterogeneous catalytic ozonation | |
650 | 4 | |a Mechanism | |
650 | 4 | |a Reactive oxygen species | |
650 | 4 | |a Clofibric acid | |
650 | 4 | |a Reaction path | |
700 | 1 | |a Tang, Yiming |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jingxian |e verfasserin |4 aut | |
700 | 1 | |a Hao, Wenjing |e verfasserin |4 aut | |
700 | 1 | |a Chen, Weirui |e verfasserin |4 aut | |
700 | 1 | |a Gu, Fenglong |e verfasserin |4 aut | |
700 | 1 | |a Hu, Zhe |e verfasserin |4 aut | |
700 | 1 | |a Li, Laisheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Separation and purification technology |d Amsterdam [u.a.] : Elsevier Science, 1997 |g 211, Seite 684-696 |h Online-Ressource |w (DE-627)320620123 |w (DE-600)2022535-0 |w (DE-576)259485349 |7 nnns |
773 | 1 | 8 | |g volume:211 |g pages:684-696 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.11 |j Mechanische Verfahrenstechnik |
936 | b | k | |a 58.13 |j Thermische Verfahrenstechnik |
951 | |a AR | ||
952 | |d 211 |h 684-696 |
author_variant |
s l sl y t yt j z jz w h wh w c wc f g fg z h zh l l ll |
---|---|
matchkey_str |
lishangyitangyimingzhangjingxianhaowenji:2018----:dacdngenzntopoesormvlflfbiaiiwtrytmrprtoadehnsaay |
hierarchy_sort_str |
2018 |
bklnumber |
58.11 58.13 |
publishDate |
2018 |
allfields |
10.1016/j.seppur.2018.10.031 doi (DE-627)ELV001244051 (ELSEVIER)S1383-5866(18)32942-3 DE-627 ger DE-627 rda eng 540 DE-600 58.11 bkl 58.13 bkl Li, Shangyi verfasserin aut Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. Cu-MCM-48 Heterogeneous catalytic ozonation Mechanism Reactive oxygen species Clofibric acid Reaction path Tang, Yiming verfasserin aut Zhang, Jingxian verfasserin aut Hao, Wenjing verfasserin aut Chen, Weirui verfasserin aut Gu, Fenglong verfasserin aut Hu, Zhe verfasserin aut Li, Laisheng verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 211, Seite 684-696 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:211 pages:684-696 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik 58.13 Thermische Verfahrenstechnik AR 211 684-696 |
spelling |
10.1016/j.seppur.2018.10.031 doi (DE-627)ELV001244051 (ELSEVIER)S1383-5866(18)32942-3 DE-627 ger DE-627 rda eng 540 DE-600 58.11 bkl 58.13 bkl Li, Shangyi verfasserin aut Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. Cu-MCM-48 Heterogeneous catalytic ozonation Mechanism Reactive oxygen species Clofibric acid Reaction path Tang, Yiming verfasserin aut Zhang, Jingxian verfasserin aut Hao, Wenjing verfasserin aut Chen, Weirui verfasserin aut Gu, Fenglong verfasserin aut Hu, Zhe verfasserin aut Li, Laisheng verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 211, Seite 684-696 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:211 pages:684-696 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik 58.13 Thermische Verfahrenstechnik AR 211 684-696 |
allfields_unstemmed |
10.1016/j.seppur.2018.10.031 doi (DE-627)ELV001244051 (ELSEVIER)S1383-5866(18)32942-3 DE-627 ger DE-627 rda eng 540 DE-600 58.11 bkl 58.13 bkl Li, Shangyi verfasserin aut Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. Cu-MCM-48 Heterogeneous catalytic ozonation Mechanism Reactive oxygen species Clofibric acid Reaction path Tang, Yiming verfasserin aut Zhang, Jingxian verfasserin aut Hao, Wenjing verfasserin aut Chen, Weirui verfasserin aut Gu, Fenglong verfasserin aut Hu, Zhe verfasserin aut Li, Laisheng verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 211, Seite 684-696 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:211 pages:684-696 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik 58.13 Thermische Verfahrenstechnik AR 211 684-696 |
allfieldsGer |
10.1016/j.seppur.2018.10.031 doi (DE-627)ELV001244051 (ELSEVIER)S1383-5866(18)32942-3 DE-627 ger DE-627 rda eng 540 DE-600 58.11 bkl 58.13 bkl Li, Shangyi verfasserin aut Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. Cu-MCM-48 Heterogeneous catalytic ozonation Mechanism Reactive oxygen species Clofibric acid Reaction path Tang, Yiming verfasserin aut Zhang, Jingxian verfasserin aut Hao, Wenjing verfasserin aut Chen, Weirui verfasserin aut Gu, Fenglong verfasserin aut Hu, Zhe verfasserin aut Li, Laisheng verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 211, Seite 684-696 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:211 pages:684-696 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik 58.13 Thermische Verfahrenstechnik AR 211 684-696 |
allfieldsSound |
10.1016/j.seppur.2018.10.031 doi (DE-627)ELV001244051 (ELSEVIER)S1383-5866(18)32942-3 DE-627 ger DE-627 rda eng 540 DE-600 58.11 bkl 58.13 bkl Li, Shangyi verfasserin aut Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. Cu-MCM-48 Heterogeneous catalytic ozonation Mechanism Reactive oxygen species Clofibric acid Reaction path Tang, Yiming verfasserin aut Zhang, Jingxian verfasserin aut Hao, Wenjing verfasserin aut Chen, Weirui verfasserin aut Gu, Fenglong verfasserin aut Hu, Zhe verfasserin aut Li, Laisheng verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 211, Seite 684-696 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:211 pages:684-696 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik 58.13 Thermische Verfahrenstechnik AR 211 684-696 |
language |
English |
source |
Enthalten in Separation and purification technology 211, Seite 684-696 volume:211 pages:684-696 |
sourceStr |
Enthalten in Separation and purification technology 211, Seite 684-696 volume:211 pages:684-696 |
format_phy_str_mv |
Article |
bklname |
Mechanische Verfahrenstechnik Thermische Verfahrenstechnik |
institution |
findex.gbv.de |
topic_facet |
Cu-MCM-48 Heterogeneous catalytic ozonation Mechanism Reactive oxygen species Clofibric acid Reaction path |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Separation and purification technology |
authorswithroles_txt_mv |
Li, Shangyi @@aut@@ Tang, Yiming @@aut@@ Zhang, Jingxian @@aut@@ Hao, Wenjing @@aut@@ Chen, Weirui @@aut@@ Gu, Fenglong @@aut@@ Hu, Zhe @@aut@@ Li, Laisheng @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320620123 |
dewey-sort |
3540 |
id |
ELV001244051 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001244051</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.seppur.2018.10.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001244051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1383-5866(18)32942-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shangyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cu-MCM-48</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous catalytic ozonation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive oxygen species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clofibric acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction path</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yiming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jingxian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Wenjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weirui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Fenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Laisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Separation and purification technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1997</subfield><subfield code="g">211, Seite 684-696</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320620123</subfield><subfield code="w">(DE-600)2022535-0</subfield><subfield code="w">(DE-576)259485349</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:211</subfield><subfield code="g">pages:684-696</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.13</subfield><subfield code="j">Thermische Verfahrenstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">211</subfield><subfield code="h">684-696</subfield></datafield></record></collection>
|
author |
Li, Shangyi |
spellingShingle |
Li, Shangyi ddc 540 bkl 58.11 bkl 58.13 misc Cu-MCM-48 misc Heterogeneous catalytic ozonation misc Mechanism misc Reactive oxygen species misc Clofibric acid misc Reaction path Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 |
authorStr |
Li, Shangyi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320620123 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 DE-600 58.11 bkl 58.13 bkl Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 Cu-MCM-48 Heterogeneous catalytic ozonation Mechanism Reactive oxygen species Clofibric acid Reaction path |
topic |
ddc 540 bkl 58.11 bkl 58.13 misc Cu-MCM-48 misc Heterogeneous catalytic ozonation misc Mechanism misc Reactive oxygen species misc Clofibric acid misc Reaction path |
topic_unstemmed |
ddc 540 bkl 58.11 bkl 58.13 misc Cu-MCM-48 misc Heterogeneous catalytic ozonation misc Mechanism misc Reactive oxygen species misc Clofibric acid misc Reaction path |
topic_browse |
ddc 540 bkl 58.11 bkl 58.13 misc Cu-MCM-48 misc Heterogeneous catalytic ozonation misc Mechanism misc Reactive oxygen species misc Clofibric acid misc Reaction path |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Separation and purification technology |
hierarchy_parent_id |
320620123 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Separation and purification technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 |
title |
Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 |
ctrlnum |
(DE-627)ELV001244051 (ELSEVIER)S1383-5866(18)32942-3 |
title_full |
Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 |
author_sort |
Li, Shangyi |
journal |
Separation and purification technology |
journalStr |
Separation and purification technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
684 |
author_browse |
Li, Shangyi Tang, Yiming Zhang, Jingxian Hao, Wenjing Chen, Weirui Gu, Fenglong Hu, Zhe Li, Laisheng |
container_volume |
211 |
class |
540 DE-600 58.11 bkl 58.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Shangyi |
doi_str_mv |
10.1016/j.seppur.2018.10.031 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
advanced and green ozonation process for removal of clofibric acid in water system: preparation and mechanism analysis of efficient copper-substituted mcm-48 |
title_auth |
Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 |
abstract |
This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. |
abstractGer |
This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. |
abstract_unstemmed |
This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48 |
remote_bool |
true |
author2 |
Tang, Yiming Zhang, Jingxian Hao, Wenjing Chen, Weirui Gu, Fenglong Hu, Zhe Li, Laisheng |
author2Str |
Tang, Yiming Zhang, Jingxian Hao, Wenjing Chen, Weirui Gu, Fenglong Hu, Zhe Li, Laisheng |
ppnlink |
320620123 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.seppur.2018.10.031 |
up_date |
2024-07-06T20:42:54.887Z |
_version_ |
1803863798462808064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001244051</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.seppur.2018.10.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001244051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1383-5866(18)32942-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shangyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper described the use of modified mesoporous molecular sieves to remove clofibric acid through catalytic ozonation. The mesoporous silicate MCM-48 and Cu-substituted MCM-48 (Cu-MCM-48) with different Cu contents were prepared by hydrothermal method in surfactant solutions. The catalyst was characterized by XRD, UV–vis, and XPS, indicating that copper was successfully doped in the framework of three-dimensional MCM-48 and Cu-O-Si linkage was formed in Cu-MCM-48 samples. The SEM and TEM graphs exhibited that the cubic arrays were highly homogeneous and well-ordered. However, high Cu contents destroyed the basic structure of pure MCM-48 and metallic nanometric clusters accumulated on the surface of samples. The degradation and mineralization of clofibric acid (CA) were investigated with the presence of Cu modified MCM-48 (Cu-MCM-48) during ozonation. When the molar ratio of Si/Cu was 60, TOC removal reached 41.1% at 60 min oxidation time. The catalytic mechanism of Cu60-MCM-48 was also investigated by using density functional theory (DFT). The radical quenching experiments revealed that hydroxyl radical ( OH) and superoxide radical ( O2 −) were the reactive oxygen species (ROS) for CA degradation. Cu60-MCM-48 showed favorable removal efficiency in the mild acid condition and remained high Lewis acid amount after reactions according to the results of Fourier transformer infrared (FTIR) of adsorbed pyridine. Furthermore, the possible reaction routes including C1O and C4Cl bonds destroying and aromatic ring cleavage were proposed by HPLC-MS. 2-hydroxyisobutiric acid was the main intermediate in ozonation process with the presence of Cu60-MCM-48.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cu-MCM-48</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous catalytic ozonation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive oxygen species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clofibric acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction path</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yiming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jingxian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Wenjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weirui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Fenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Laisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Separation and purification technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1997</subfield><subfield code="g">211, Seite 684-696</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320620123</subfield><subfield code="w">(DE-600)2022535-0</subfield><subfield code="w">(DE-576)259485349</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:211</subfield><subfield code="g">pages:684-696</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.13</subfield><subfield code="j">Thermische Verfahrenstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">211</subfield><subfield code="h">684-696</subfield></datafield></record></collection>
|
score |
7.4011326 |