Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain
Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while...
Ausführliche Beschreibung
Autor*in: |
Sokolenko, Stanislav [verfasserIn] Jézéquel, Tangi [verfasserIn] Hajjar, Ghina [verfasserIn] Farjon, Jonathan [verfasserIn] Akoka, Serge [verfasserIn] Giraudeau, Patrick [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of magnetic resonance - Amsterdam [u.a.] : Elsevier, 1969, 298, Seite 91-100 |
---|---|
Übergeordnetes Werk: |
volume:298 ; pages:91-100 |
DOI / URN: |
10.1016/j.jmr.2018.11.004 |
---|
Katalog-ID: |
ELV001290924 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001290924 | ||
003 | DE-627 | ||
005 | 20230524122232.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmr.2018.11.004 |2 doi | |
035 | |a (DE-627)ELV001290924 | ||
035 | |a (ELSEVIER)S1090-7807(18)30305-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 530 |q DE-600 |
100 | 1 | |a Sokolenko, Stanislav |e verfasserin |4 aut | |
245 | 1 | 0 | |a Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. | ||
650 | 4 | |a NMR | |
650 | 4 | |a Lineshape | |
650 | 4 | |a Fitting | |
650 | 4 | |a Quantitative | |
650 | 4 | |a Frequency | |
650 | 4 | |a Imaginary | |
700 | 1 | |a Jézéquel, Tangi |e verfasserin |4 aut | |
700 | 1 | |a Hajjar, Ghina |e verfasserin |4 aut | |
700 | 1 | |a Farjon, Jonathan |e verfasserin |4 aut | |
700 | 1 | |a Akoka, Serge |e verfasserin |4 aut | |
700 | 1 | |a Giraudeau, Patrick |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of magnetic resonance |d Amsterdam [u.a.] : Elsevier, 1969 |g 298, Seite 91-100 |h Online-Ressource |w (DE-627)267327137 |w (DE-600)1469665-4 |w (DE-576)103373225 |x 1096-0856 |7 nnns |
773 | 1 | 8 | |g volume:298 |g pages:91-100 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 298 |h 91-100 |
author_variant |
s s ss t j tj g h gh j f jf s a sa p g pg |
---|---|
matchkey_str |
article:10960856:2018----::outdmlnsaeitnuigelniaiayaan |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1016/j.jmr.2018.11.004 doi (DE-627)ELV001290924 (ELSEVIER)S1090-7807(18)30305-7 DE-627 ger DE-627 rda eng 550 530 DE-600 Sokolenko, Stanislav verfasserin aut Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. NMR Lineshape Fitting Quantitative Frequency Imaginary Jézéquel, Tangi verfasserin aut Hajjar, Ghina verfasserin aut Farjon, Jonathan verfasserin aut Akoka, Serge verfasserin aut Giraudeau, Patrick verfasserin aut Enthalten in Journal of magnetic resonance Amsterdam [u.a.] : Elsevier, 1969 298, Seite 91-100 Online-Ressource (DE-627)267327137 (DE-600)1469665-4 (DE-576)103373225 1096-0856 nnns volume:298 pages:91-100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 298 91-100 |
spelling |
10.1016/j.jmr.2018.11.004 doi (DE-627)ELV001290924 (ELSEVIER)S1090-7807(18)30305-7 DE-627 ger DE-627 rda eng 550 530 DE-600 Sokolenko, Stanislav verfasserin aut Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. NMR Lineshape Fitting Quantitative Frequency Imaginary Jézéquel, Tangi verfasserin aut Hajjar, Ghina verfasserin aut Farjon, Jonathan verfasserin aut Akoka, Serge verfasserin aut Giraudeau, Patrick verfasserin aut Enthalten in Journal of magnetic resonance Amsterdam [u.a.] : Elsevier, 1969 298, Seite 91-100 Online-Ressource (DE-627)267327137 (DE-600)1469665-4 (DE-576)103373225 1096-0856 nnns volume:298 pages:91-100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 298 91-100 |
allfields_unstemmed |
10.1016/j.jmr.2018.11.004 doi (DE-627)ELV001290924 (ELSEVIER)S1090-7807(18)30305-7 DE-627 ger DE-627 rda eng 550 530 DE-600 Sokolenko, Stanislav verfasserin aut Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. NMR Lineshape Fitting Quantitative Frequency Imaginary Jézéquel, Tangi verfasserin aut Hajjar, Ghina verfasserin aut Farjon, Jonathan verfasserin aut Akoka, Serge verfasserin aut Giraudeau, Patrick verfasserin aut Enthalten in Journal of magnetic resonance Amsterdam [u.a.] : Elsevier, 1969 298, Seite 91-100 Online-Ressource (DE-627)267327137 (DE-600)1469665-4 (DE-576)103373225 1096-0856 nnns volume:298 pages:91-100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 298 91-100 |
allfieldsGer |
10.1016/j.jmr.2018.11.004 doi (DE-627)ELV001290924 (ELSEVIER)S1090-7807(18)30305-7 DE-627 ger DE-627 rda eng 550 530 DE-600 Sokolenko, Stanislav verfasserin aut Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. NMR Lineshape Fitting Quantitative Frequency Imaginary Jézéquel, Tangi verfasserin aut Hajjar, Ghina verfasserin aut Farjon, Jonathan verfasserin aut Akoka, Serge verfasserin aut Giraudeau, Patrick verfasserin aut Enthalten in Journal of magnetic resonance Amsterdam [u.a.] : Elsevier, 1969 298, Seite 91-100 Online-Ressource (DE-627)267327137 (DE-600)1469665-4 (DE-576)103373225 1096-0856 nnns volume:298 pages:91-100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 298 91-100 |
allfieldsSound |
10.1016/j.jmr.2018.11.004 doi (DE-627)ELV001290924 (ELSEVIER)S1090-7807(18)30305-7 DE-627 ger DE-627 rda eng 550 530 DE-600 Sokolenko, Stanislav verfasserin aut Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. NMR Lineshape Fitting Quantitative Frequency Imaginary Jézéquel, Tangi verfasserin aut Hajjar, Ghina verfasserin aut Farjon, Jonathan verfasserin aut Akoka, Serge verfasserin aut Giraudeau, Patrick verfasserin aut Enthalten in Journal of magnetic resonance Amsterdam [u.a.] : Elsevier, 1969 298, Seite 91-100 Online-Ressource (DE-627)267327137 (DE-600)1469665-4 (DE-576)103373225 1096-0856 nnns volume:298 pages:91-100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 298 91-100 |
language |
English |
source |
Enthalten in Journal of magnetic resonance 298, Seite 91-100 volume:298 pages:91-100 |
sourceStr |
Enthalten in Journal of magnetic resonance 298, Seite 91-100 volume:298 pages:91-100 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
NMR Lineshape Fitting Quantitative Frequency Imaginary |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of magnetic resonance |
authorswithroles_txt_mv |
Sokolenko, Stanislav @@aut@@ Jézéquel, Tangi @@aut@@ Hajjar, Ghina @@aut@@ Farjon, Jonathan @@aut@@ Akoka, Serge @@aut@@ Giraudeau, Patrick @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
267327137 |
dewey-sort |
3550 |
id |
ELV001290924 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001290924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmr.2018.11.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001290924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1090-7807(18)30305-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sokolenko, Stanislav</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lineshape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaginary</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jézéquel, Tangi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hajjar, Ghina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farjon, Jonathan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akoka, Serge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giraudeau, Patrick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of magnetic resonance</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1969</subfield><subfield code="g">298, Seite 91-100</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267327137</subfield><subfield code="w">(DE-600)1469665-4</subfield><subfield code="w">(DE-576)103373225</subfield><subfield code="x">1096-0856</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:298</subfield><subfield code="g">pages:91-100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">298</subfield><subfield code="h">91-100</subfield></datafield></record></collection>
|
author |
Sokolenko, Stanislav |
spellingShingle |
Sokolenko, Stanislav ddc 550 misc NMR misc Lineshape misc Fitting misc Quantitative misc Frequency misc Imaginary Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain |
authorStr |
Sokolenko, Stanislav |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)267327137 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1096-0856 |
topic_title |
550 530 DE-600 Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain NMR Lineshape Fitting Quantitative Frequency Imaginary |
topic |
ddc 550 misc NMR misc Lineshape misc Fitting misc Quantitative misc Frequency misc Imaginary |
topic_unstemmed |
ddc 550 misc NMR misc Lineshape misc Fitting misc Quantitative misc Frequency misc Imaginary |
topic_browse |
ddc 550 misc NMR misc Lineshape misc Fitting misc Quantitative misc Frequency misc Imaginary |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of magnetic resonance |
hierarchy_parent_id |
267327137 |
dewey-tens |
550 - Earth sciences & geology 530 - Physics |
hierarchy_top_title |
Journal of magnetic resonance |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)267327137 (DE-600)1469665-4 (DE-576)103373225 |
title |
Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain |
ctrlnum |
(DE-627)ELV001290924 (ELSEVIER)S1090-7807(18)30305-7 |
title_full |
Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain |
author_sort |
Sokolenko, Stanislav |
journal |
Journal of magnetic resonance |
journalStr |
Journal of magnetic resonance |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
91 |
author_browse |
Sokolenko, Stanislav Jézéquel, Tangi Hajjar, Ghina Farjon, Jonathan Akoka, Serge Giraudeau, Patrick |
container_volume |
298 |
class |
550 530 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Sokolenko, Stanislav |
doi_str_mv |
10.1016/j.jmr.2018.11.004 |
dewey-full |
550 530 |
author2-role |
verfasserin |
title_sort |
robust 1d nmr lineshape fitting using real and imaginary data in the frequency domain |
title_auth |
Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain |
abstract |
Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. |
abstractGer |
Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. |
abstract_unstemmed |
Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain |
remote_bool |
true |
author2 |
Jézéquel, Tangi Hajjar, Ghina Farjon, Jonathan Akoka, Serge Giraudeau, Patrick |
author2Str |
Jézéquel, Tangi Hajjar, Ghina Farjon, Jonathan Akoka, Serge Giraudeau, Patrick |
ppnlink |
267327137 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmr.2018.11.004 |
up_date |
2024-07-06T20:52:22.693Z |
_version_ |
1803864393850552320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001290924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmr.2018.11.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001290924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1090-7807(18)30305-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sokolenko, Stanislav</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantitative NMR is intrinsically dependent on precise, accurate, and robust peak area calculation. In this work, we demonstrate how the use of complex-valued peak descriptions can improve peak fitting in the frequency domain — incorporating phase and baseline correction as well as apodization while working with commonly used Fourier-transformed data. The method has been implemented in an open source R package called rnmrfit that is available for download on GitHub (https://github.com/ssokolen/rnmrfit). Application to real data suggests that this approach can also result in dramatically higher precision than can be achieved with existing software. Simulation data indicates that coefficients of variation below 0.1% can be readily achieved at signal to noise (SNR) ratios of approximately 100. The use of complex-valued data in the frequency domain is demonstrated as a relatively simple and effective means of improving peak fitting for quantitative NMR analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lineshape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaginary</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jézéquel, Tangi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hajjar, Ghina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farjon, Jonathan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akoka, Serge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giraudeau, Patrick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of magnetic resonance</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1969</subfield><subfield code="g">298, Seite 91-100</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267327137</subfield><subfield code="w">(DE-600)1469665-4</subfield><subfield code="w">(DE-576)103373225</subfield><subfield code="x">1096-0856</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:298</subfield><subfield code="g">pages:91-100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">298</subfield><subfield code="h">91-100</subfield></datafield></record></collection>
|
score |
7.401043 |