Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics
A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si di...
Ausführliche Beschreibung
Autor*in: |
Kherodia, Ashok [verfasserIn] Panchal, Ashish K. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Amorphous hydrogenated silicon Nanocrystalline hydrogenated silicon |
---|
Übergeordnetes Werk: |
Enthalten in: Thin solid films - Amsterdam [u.a.] : Elsevier, 1967, 654, Seite 16-22 |
---|---|
Übergeordnetes Werk: |
volume:654 ; pages:16-22 |
DOI / URN: |
10.1016/j.tsf.2018.03.060 |
---|
Katalog-ID: |
ELV001412523 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001412523 | ||
003 | DE-627 | ||
005 | 20230524145409.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tsf.2018.03.060 |2 doi | |
035 | |a (DE-627)ELV001412523 | ||
035 | |a (ELSEVIER)S0040-6090(18)30204-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 660 |q DE-600 |
084 | |a 33.68 |2 bkl | ||
100 | 1 | |a Kherodia, Ashok |e verfasserin |4 aut | |
245 | 1 | 0 | |a Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. | ||
650 | 4 | |a Amorphous hydrogenated silicon | |
650 | 4 | |a Nanocrystalline hydrogenated silicon | |
650 | 4 | |a Multilayers | |
650 | 4 | |a Hot-wire chemical vapour deposition | |
650 | 4 | |a Hydrogen dilution | |
650 | 4 | |a Poole-Frenkel emission | |
700 | 1 | |a Panchal, Ashish K. |e verfasserin |0 (orcid)0000-0002-5285-4919 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Thin solid films |d Amsterdam [u.a.] : Elsevier, 1967 |g 654, Seite 16-22 |h Online-Ressource |w (DE-627)300593503 |w (DE-600)1482896-0 |w (DE-576)079165354 |7 nnns |
773 | 1 | 8 | |g volume:654 |g pages:16-22 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |
951 | |a AR | ||
952 | |d 654 |h 16-22 |
author_variant |
a k ak a k p ak akp |
---|---|
matchkey_str |
kherodiaashokpanchalashishk:2018----:olfeklmsinndfcdniynshcimliaeflsoaliio |
hierarchy_sort_str |
2018 |
bklnumber |
33.68 |
publishDate |
2018 |
allfields |
10.1016/j.tsf.2018.03.060 doi (DE-627)ELV001412523 (ELSEVIER)S0040-6090(18)30204-9 DE-627 ger DE-627 rda eng 070 660 DE-600 33.68 bkl Kherodia, Ashok verfasserin aut Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. Amorphous hydrogenated silicon Nanocrystalline hydrogenated silicon Multilayers Hot-wire chemical vapour deposition Hydrogen dilution Poole-Frenkel emission Panchal, Ashish K. verfasserin (orcid)0000-0002-5285-4919 aut Enthalten in Thin solid films Amsterdam [u.a.] : Elsevier, 1967 654, Seite 16-22 Online-Ressource (DE-627)300593503 (DE-600)1482896-0 (DE-576)079165354 nnns volume:654 pages:16-22 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik AR 654 16-22 |
spelling |
10.1016/j.tsf.2018.03.060 doi (DE-627)ELV001412523 (ELSEVIER)S0040-6090(18)30204-9 DE-627 ger DE-627 rda eng 070 660 DE-600 33.68 bkl Kherodia, Ashok verfasserin aut Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. Amorphous hydrogenated silicon Nanocrystalline hydrogenated silicon Multilayers Hot-wire chemical vapour deposition Hydrogen dilution Poole-Frenkel emission Panchal, Ashish K. verfasserin (orcid)0000-0002-5285-4919 aut Enthalten in Thin solid films Amsterdam [u.a.] : Elsevier, 1967 654, Seite 16-22 Online-Ressource (DE-627)300593503 (DE-600)1482896-0 (DE-576)079165354 nnns volume:654 pages:16-22 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik AR 654 16-22 |
allfields_unstemmed |
10.1016/j.tsf.2018.03.060 doi (DE-627)ELV001412523 (ELSEVIER)S0040-6090(18)30204-9 DE-627 ger DE-627 rda eng 070 660 DE-600 33.68 bkl Kherodia, Ashok verfasserin aut Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. Amorphous hydrogenated silicon Nanocrystalline hydrogenated silicon Multilayers Hot-wire chemical vapour deposition Hydrogen dilution Poole-Frenkel emission Panchal, Ashish K. verfasserin (orcid)0000-0002-5285-4919 aut Enthalten in Thin solid films Amsterdam [u.a.] : Elsevier, 1967 654, Seite 16-22 Online-Ressource (DE-627)300593503 (DE-600)1482896-0 (DE-576)079165354 nnns volume:654 pages:16-22 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik AR 654 16-22 |
allfieldsGer |
10.1016/j.tsf.2018.03.060 doi (DE-627)ELV001412523 (ELSEVIER)S0040-6090(18)30204-9 DE-627 ger DE-627 rda eng 070 660 DE-600 33.68 bkl Kherodia, Ashok verfasserin aut Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. Amorphous hydrogenated silicon Nanocrystalline hydrogenated silicon Multilayers Hot-wire chemical vapour deposition Hydrogen dilution Poole-Frenkel emission Panchal, Ashish K. verfasserin (orcid)0000-0002-5285-4919 aut Enthalten in Thin solid films Amsterdam [u.a.] : Elsevier, 1967 654, Seite 16-22 Online-Ressource (DE-627)300593503 (DE-600)1482896-0 (DE-576)079165354 nnns volume:654 pages:16-22 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik AR 654 16-22 |
allfieldsSound |
10.1016/j.tsf.2018.03.060 doi (DE-627)ELV001412523 (ELSEVIER)S0040-6090(18)30204-9 DE-627 ger DE-627 rda eng 070 660 DE-600 33.68 bkl Kherodia, Ashok verfasserin aut Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. Amorphous hydrogenated silicon Nanocrystalline hydrogenated silicon Multilayers Hot-wire chemical vapour deposition Hydrogen dilution Poole-Frenkel emission Panchal, Ashish K. verfasserin (orcid)0000-0002-5285-4919 aut Enthalten in Thin solid films Amsterdam [u.a.] : Elsevier, 1967 654, Seite 16-22 Online-Ressource (DE-627)300593503 (DE-600)1482896-0 (DE-576)079165354 nnns volume:654 pages:16-22 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik AR 654 16-22 |
language |
English |
source |
Enthalten in Thin solid films 654, Seite 16-22 volume:654 pages:16-22 |
sourceStr |
Enthalten in Thin solid films 654, Seite 16-22 volume:654 pages:16-22 |
format_phy_str_mv |
Article |
bklname |
Oberflächen Dünne Schichten Grenzflächen |
institution |
findex.gbv.de |
topic_facet |
Amorphous hydrogenated silicon Nanocrystalline hydrogenated silicon Multilayers Hot-wire chemical vapour deposition Hydrogen dilution Poole-Frenkel emission |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Thin solid films |
authorswithroles_txt_mv |
Kherodia, Ashok @@aut@@ Panchal, Ashish K. @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
300593503 |
dewey-sort |
270 |
id |
ELV001412523 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001412523</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145409.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tsf.2018.03.060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001412523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0040-6090(18)30204-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kherodia, Ashok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous hydrogenated silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocrystalline hydrogenated silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilayers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hot-wire chemical vapour deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen dilution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poole-Frenkel emission</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panchal, Ashish K.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5285-4919</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Thin solid films</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1967</subfield><subfield code="g">654, Seite 16-22</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300593503</subfield><subfield code="w">(DE-600)1482896-0</subfield><subfield code="w">(DE-576)079165354</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:654</subfield><subfield code="g">pages:16-22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">654</subfield><subfield code="h">16-22</subfield></datafield></record></collection>
|
author |
Kherodia, Ashok |
spellingShingle |
Kherodia, Ashok ddc 070 bkl 33.68 misc Amorphous hydrogenated silicon misc Nanocrystalline hydrogenated silicon misc Multilayers misc Hot-wire chemical vapour deposition misc Hydrogen dilution misc Poole-Frenkel emission Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics |
authorStr |
Kherodia, Ashok |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300593503 |
format |
electronic Article |
dewey-ones |
070 - News media, journalism & publishing 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
070 660 DE-600 33.68 bkl Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics Amorphous hydrogenated silicon Nanocrystalline hydrogenated silicon Multilayers Hot-wire chemical vapour deposition Hydrogen dilution Poole-Frenkel emission |
topic |
ddc 070 bkl 33.68 misc Amorphous hydrogenated silicon misc Nanocrystalline hydrogenated silicon misc Multilayers misc Hot-wire chemical vapour deposition misc Hydrogen dilution misc Poole-Frenkel emission |
topic_unstemmed |
ddc 070 bkl 33.68 misc Amorphous hydrogenated silicon misc Nanocrystalline hydrogenated silicon misc Multilayers misc Hot-wire chemical vapour deposition misc Hydrogen dilution misc Poole-Frenkel emission |
topic_browse |
ddc 070 bkl 33.68 misc Amorphous hydrogenated silicon misc Nanocrystalline hydrogenated silicon misc Multilayers misc Hot-wire chemical vapour deposition misc Hydrogen dilution misc Poole-Frenkel emission |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Thin solid films |
hierarchy_parent_id |
300593503 |
dewey-tens |
070 - News media, journalism & publishing 660 - Chemical engineering |
hierarchy_top_title |
Thin solid films |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300593503 (DE-600)1482896-0 (DE-576)079165354 |
title |
Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics |
ctrlnum |
(DE-627)ELV001412523 (ELSEVIER)S0040-6090(18)30204-9 |
title_full |
Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics |
author_sort |
Kherodia, Ashok |
journal |
Thin solid films |
journalStr |
Thin solid films |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
16 |
author_browse |
Kherodia, Ashok Panchal, Ashish K. |
container_volume |
654 |
class |
070 660 DE-600 33.68 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kherodia, Ashok |
doi_str_mv |
10.1016/j.tsf.2018.03.060 |
normlink |
(ORCID)0000-0002-5285-4919 |
normlink_prefix_str_mv |
(orcid)0000-0002-5285-4919 |
dewey-full |
070 660 |
author2-role |
verfasserin |
title_sort |
poole-frenkel emission and defect density in a-si:h/nc-si:h multilayer films for “all silicon” third generation photovoltaics |
title_auth |
Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics |
abstract |
A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. |
abstractGer |
A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. |
abstract_unstemmed |
A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics |
remote_bool |
true |
author2 |
Panchal, Ashish K. |
author2Str |
Panchal, Ashish K. |
ppnlink |
300593503 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.tsf.2018.03.060 |
up_date |
2024-07-06T21:17:21.629Z |
_version_ |
1803865965597818880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001412523</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145409.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tsf.2018.03.060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001412523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0040-6090(18)30204-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kherodia, Ashok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A layered structure of nanocrystalline Silicon (nc-Si) and Si compound dielectric (SiO2, Si3N4, SiC) is becoming popular for the third generation photovoltaics because of its tunable optical bandgap. However, this structure makes poor current conduction, as the barrier potential between Si and Si dielectric is very high. An excellent current conduction can be obtained by replacing the Si dielectric with amorphous Si (a-Si:H), as the barrier potential between a-Si and nc-Si is very low compared to nc-Si/Si dielectric structure. This paper presents the electrical properties of an a-Si:H/nc-Si:H multilayer film fabricated using hot-wire chemical vapour deposition. Hydrogen (H2) dilution in the nc-Si:H layers was considered as a variable parameter in different multilayer films. Formation of a nc-Si:H layer sandwiched between two a-Si:H layers was confirmed by Raman spectroscopy and X-ray diffraction. The current-voltage measurements performed in low temperature reveal different vertical charge transport mechanisms, such as Poole-Frenkel (PF) emission, phonon assisted tunnelling and direct tunnelling. Below room temperature, the PF emission rate increases the current with increase in H2 dilution in the multilayer films. The capacitance-voltage measurement performed near the room temperature explains the increased defects in the multilayer films with an increase in H2 dilution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous hydrogenated silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocrystalline hydrogenated silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilayers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hot-wire chemical vapour deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen dilution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poole-Frenkel emission</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panchal, Ashish K.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5285-4919</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Thin solid films</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1967</subfield><subfield code="g">654, Seite 16-22</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300593503</subfield><subfield code="w">(DE-600)1482896-0</subfield><subfield code="w">(DE-576)079165354</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:654</subfield><subfield code="g">pages:16-22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">654</subfield><subfield code="h">16-22</subfield></datafield></record></collection>
|
score |
7.402669 |