An experimental and kinetic modelling study of
In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data ar...
Ausführliche Beschreibung
Autor*in: |
Pelucchi, Matteo [verfasserIn] Namysl, Sylvain [verfasserIn] Ranzi, Eliseo [verfasserIn] Frassoldati, Alessio [verfasserIn] Herbinet, Olivier [verfasserIn] Battin-Leclerc, Frédérique [verfasserIn] Faravelli, Tiziano [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the Combustion Institute - Combustion Institute ; ID: gnd/1004025-0, Amsterdam [u.a.] : Elsevier, 2000, 37, Seite 389-397 |
---|---|
Übergeordnetes Werk: |
volume:37 ; pages:389-397 |
DOI / URN: |
10.1016/j.proci.2018.07.087 |
---|
Katalog-ID: |
ELV00150276X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00150276X | ||
003 | DE-627 | ||
005 | 20230524122822.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.proci.2018.07.087 |2 doi | |
035 | |a (DE-627)ELV00150276X | ||
035 | |a (ELSEVIER)S1540-7489(18)30505-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DE-600 |
100 | 1 | |a Pelucchi, Matteo |e verfasserin |0 (orcid)0000-0003-3106-0236 |4 aut | |
245 | 1 | 0 | |a An experimental and kinetic modelling study of |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. | ||
650 | 4 | |a Aldehydes | |
650 | 4 | |a Low-temperature kinetics | |
650 | 4 | |a Jet stirred reactor | |
650 | 4 | |a Kinetic modeling | |
700 | 1 | |a Namysl, Sylvain |e verfasserin |0 (orcid)0000-0002-9758-3075 |4 aut | |
700 | 1 | |a Ranzi, Eliseo |e verfasserin |4 aut | |
700 | 1 | |a Frassoldati, Alessio |e verfasserin |4 aut | |
700 | 1 | |a Herbinet, Olivier |e verfasserin |0 (orcid)0000-0002-2155-098X |4 aut | |
700 | 1 | |a Battin-Leclerc, Frédérique |e verfasserin |4 aut | |
700 | 1 | |a Faravelli, Tiziano |e verfasserin |0 (orcid)0000-0001-8382-7342 |4 aut | |
773 | 0 | 8 | |i Enthalten in |a Combustion Institute ; ID: gnd/1004025-0 |t Proceedings of the Combustion Institute |d Amsterdam [u.a.] : Elsevier, 2000 |g 37, Seite 389-397 |h Online-Ressource |w (DE-627)495741140 |w (DE-600)2197968-6 |w (DE-576)259486582 |x 1873-2704 |7 nnns |
773 | 1 | 8 | |g volume:37 |g pages:389-397 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 37 |h 389-397 |
author_variant |
m p mp s n sn e r er a f af o h oh f b l fbl t f tf |
---|---|
matchkey_str |
article:18732704:2018----::nxeietlnkntcoel |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1016/j.proci.2018.07.087 doi (DE-627)ELV00150276X (ELSEVIER)S1540-7489(18)30505-4 DE-627 ger DE-627 rda eng 660 DE-600 Pelucchi, Matteo verfasserin (orcid)0000-0003-3106-0236 aut An experimental and kinetic modelling study of 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. Aldehydes Low-temperature kinetics Jet stirred reactor Kinetic modeling Namysl, Sylvain verfasserin (orcid)0000-0002-9758-3075 aut Ranzi, Eliseo verfasserin aut Frassoldati, Alessio verfasserin aut Herbinet, Olivier verfasserin (orcid)0000-0002-2155-098X aut Battin-Leclerc, Frédérique verfasserin aut Faravelli, Tiziano verfasserin (orcid)0000-0001-8382-7342 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 37, Seite 389-397 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:37 pages:389-397 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 37 389-397 |
spelling |
10.1016/j.proci.2018.07.087 doi (DE-627)ELV00150276X (ELSEVIER)S1540-7489(18)30505-4 DE-627 ger DE-627 rda eng 660 DE-600 Pelucchi, Matteo verfasserin (orcid)0000-0003-3106-0236 aut An experimental and kinetic modelling study of 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. Aldehydes Low-temperature kinetics Jet stirred reactor Kinetic modeling Namysl, Sylvain verfasserin (orcid)0000-0002-9758-3075 aut Ranzi, Eliseo verfasserin aut Frassoldati, Alessio verfasserin aut Herbinet, Olivier verfasserin (orcid)0000-0002-2155-098X aut Battin-Leclerc, Frédérique verfasserin aut Faravelli, Tiziano verfasserin (orcid)0000-0001-8382-7342 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 37, Seite 389-397 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:37 pages:389-397 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 37 389-397 |
allfields_unstemmed |
10.1016/j.proci.2018.07.087 doi (DE-627)ELV00150276X (ELSEVIER)S1540-7489(18)30505-4 DE-627 ger DE-627 rda eng 660 DE-600 Pelucchi, Matteo verfasserin (orcid)0000-0003-3106-0236 aut An experimental and kinetic modelling study of 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. Aldehydes Low-temperature kinetics Jet stirred reactor Kinetic modeling Namysl, Sylvain verfasserin (orcid)0000-0002-9758-3075 aut Ranzi, Eliseo verfasserin aut Frassoldati, Alessio verfasserin aut Herbinet, Olivier verfasserin (orcid)0000-0002-2155-098X aut Battin-Leclerc, Frédérique verfasserin aut Faravelli, Tiziano verfasserin (orcid)0000-0001-8382-7342 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 37, Seite 389-397 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:37 pages:389-397 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 37 389-397 |
allfieldsGer |
10.1016/j.proci.2018.07.087 doi (DE-627)ELV00150276X (ELSEVIER)S1540-7489(18)30505-4 DE-627 ger DE-627 rda eng 660 DE-600 Pelucchi, Matteo verfasserin (orcid)0000-0003-3106-0236 aut An experimental and kinetic modelling study of 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. Aldehydes Low-temperature kinetics Jet stirred reactor Kinetic modeling Namysl, Sylvain verfasserin (orcid)0000-0002-9758-3075 aut Ranzi, Eliseo verfasserin aut Frassoldati, Alessio verfasserin aut Herbinet, Olivier verfasserin (orcid)0000-0002-2155-098X aut Battin-Leclerc, Frédérique verfasserin aut Faravelli, Tiziano verfasserin (orcid)0000-0001-8382-7342 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 37, Seite 389-397 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:37 pages:389-397 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 37 389-397 |
allfieldsSound |
10.1016/j.proci.2018.07.087 doi (DE-627)ELV00150276X (ELSEVIER)S1540-7489(18)30505-4 DE-627 ger DE-627 rda eng 660 DE-600 Pelucchi, Matteo verfasserin (orcid)0000-0003-3106-0236 aut An experimental and kinetic modelling study of 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. Aldehydes Low-temperature kinetics Jet stirred reactor Kinetic modeling Namysl, Sylvain verfasserin (orcid)0000-0002-9758-3075 aut Ranzi, Eliseo verfasserin aut Frassoldati, Alessio verfasserin aut Herbinet, Olivier verfasserin (orcid)0000-0002-2155-098X aut Battin-Leclerc, Frédérique verfasserin aut Faravelli, Tiziano verfasserin (orcid)0000-0001-8382-7342 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 37, Seite 389-397 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:37 pages:389-397 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 37 389-397 |
language |
English |
source |
Enthalten in Proceedings of the Combustion Institute 37, Seite 389-397 volume:37 pages:389-397 |
sourceStr |
Enthalten in Proceedings of the Combustion Institute 37, Seite 389-397 volume:37 pages:389-397 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Aldehydes Low-temperature kinetics Jet stirred reactor Kinetic modeling |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the Combustion Institute |
authorswithroles_txt_mv |
Pelucchi, Matteo @@aut@@ Namysl, Sylvain @@aut@@ Ranzi, Eliseo @@aut@@ Frassoldati, Alessio @@aut@@ Herbinet, Olivier @@aut@@ Battin-Leclerc, Frédérique @@aut@@ Faravelli, Tiziano @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
495741140 |
dewey-sort |
3660 |
id |
ELV00150276X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00150276X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.proci.2018.07.087</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00150276X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1540-7489(18)30505-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pelucchi, Matteo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3106-0236</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An experimental and kinetic modelling study of</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aldehydes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-temperature kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jet stirred reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Namysl, Sylvain</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9758-3075</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ranzi, Eliseo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frassoldati, Alessio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herbinet, Olivier</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2155-098X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Battin-Leclerc, Frédérique</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Faravelli, Tiziano</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8382-7342</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Combustion Institute ; ID: gnd/1004025-0</subfield><subfield code="t">Proceedings of the Combustion Institute</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2000</subfield><subfield code="g">37, Seite 389-397</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)495741140</subfield><subfield code="w">(DE-600)2197968-6</subfield><subfield code="w">(DE-576)259486582</subfield><subfield code="x">1873-2704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">pages:389-397</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="h">389-397</subfield></datafield></record></collection>
|
author |
Pelucchi, Matteo |
spellingShingle |
Pelucchi, Matteo ddc 660 misc Aldehydes misc Low-temperature kinetics misc Jet stirred reactor misc Kinetic modeling An experimental and kinetic modelling study of |
authorStr |
Pelucchi, Matteo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)495741140 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2704 |
topic_title |
660 DE-600 An experimental and kinetic modelling study of Aldehydes Low-temperature kinetics Jet stirred reactor Kinetic modeling |
topic |
ddc 660 misc Aldehydes misc Low-temperature kinetics misc Jet stirred reactor misc Kinetic modeling |
topic_unstemmed |
ddc 660 misc Aldehydes misc Low-temperature kinetics misc Jet stirred reactor misc Kinetic modeling |
topic_browse |
ddc 660 misc Aldehydes misc Low-temperature kinetics misc Jet stirred reactor misc Kinetic modeling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Proceedings of the Combustion Institute |
hierarchy_parent_id |
495741140 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Proceedings of the Combustion Institute |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 |
title |
An experimental and kinetic modelling study of |
ctrlnum |
(DE-627)ELV00150276X (ELSEVIER)S1540-7489(18)30505-4 |
title_full |
An experimental and kinetic modelling study of |
author_sort |
Pelucchi, Matteo |
journal |
Proceedings of the Combustion Institute |
journalStr |
Proceedings of the Combustion Institute |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
389 |
author_browse |
Pelucchi, Matteo Namysl, Sylvain Ranzi, Eliseo Frassoldati, Alessio Herbinet, Olivier Battin-Leclerc, Frédérique Faravelli, Tiziano |
container_volume |
37 |
class |
660 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Pelucchi, Matteo |
doi_str_mv |
10.1016/j.proci.2018.07.087 |
normlink |
(ORCID)0000-0003-3106-0236 (ORCID)0000-0002-9758-3075 (ORCID)0000-0002-2155-098X (ORCID)0000-0001-8382-7342 |
normlink_prefix_str_mv |
(orcid)0000-0003-3106-0236 (orcid)0000-0002-9758-3075 (orcid)0000-0002-2155-098X (orcid)0000-0001-8382-7342 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
an experimental and kinetic modelling study of |
title_auth |
An experimental and kinetic modelling study of |
abstract |
In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. |
abstractGer |
In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. |
abstract_unstemmed |
In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
An experimental and kinetic modelling study of |
remote_bool |
true |
author2 |
Namysl, Sylvain Ranzi, Eliseo Frassoldati, Alessio Herbinet, Olivier Battin-Leclerc, Frédérique Faravelli, Tiziano |
author2Str |
Namysl, Sylvain Ranzi, Eliseo Frassoldati, Alessio Herbinet, Olivier Battin-Leclerc, Frédérique Faravelli, Tiziano |
ppnlink |
495741140 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.proci.2018.07.087 |
up_date |
2024-07-06T21:35:32.102Z |
_version_ |
1803867109041635328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00150276X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.proci.2018.07.087</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00150276X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1540-7489(18)30505-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pelucchi, Matteo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3106-0236</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An experimental and kinetic modelling study of</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475–1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cn aldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1 alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4 C6 linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aldehydes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-temperature kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jet stirred reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Namysl, Sylvain</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9758-3075</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ranzi, Eliseo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frassoldati, Alessio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herbinet, Olivier</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2155-098X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Battin-Leclerc, Frédérique</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Faravelli, Tiziano</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8382-7342</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Combustion Institute ; ID: gnd/1004025-0</subfield><subfield code="t">Proceedings of the Combustion Institute</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2000</subfield><subfield code="g">37, Seite 389-397</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)495741140</subfield><subfield code="w">(DE-600)2197968-6</subfield><subfield code="w">(DE-576)259486582</subfield><subfield code="x">1873-2704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">pages:389-397</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="h">389-397</subfield></datafield></record></collection>
|
score |
7.4020147 |