Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system
A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term eff...
Ausführliche Beschreibung
Autor*in: |
Xu, Jing [verfasserIn] Han, Huifang [verfasserIn] Ning, Tangyuan [verfasserIn] Li, Zengjia [verfasserIn] Lal, Rattan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Field crops research - Amsterdam : Elsevier, 1978, 233, Seite 33-40 |
---|---|
Übergeordnetes Werk: |
volume:233 ; pages:33-40 |
DOI / URN: |
10.1016/j.fcr.2018.12.016 |
---|
Katalog-ID: |
ELV001587005 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001587005 | ||
003 | DE-627 | ||
005 | 20230524160857.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fcr.2018.12.016 |2 doi | |
035 | |a (DE-627)ELV001587005 | ||
035 | |a (ELSEVIER)S0378-4290(18)30590-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |q DE-600 |
084 | |a 48.00 |2 bkl | ||
100 | 1 | |a Xu, Jing |e verfasserin |0 (orcid)0000-0001-9137-7046 |4 aut | |
245 | 1 | 0 | |a Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. | ||
650 | 4 | |a Conventional tillage | |
650 | 4 | |a No-tillage | |
650 | 4 | |a Subsoiling | |
650 | 4 | |a Yield | |
650 | 4 | |a Wheat-maize system | |
700 | 1 | |a Han, Huifang |e verfasserin |4 aut | |
700 | 1 | |a Ning, Tangyuan |e verfasserin |4 aut | |
700 | 1 | |a Li, Zengjia |e verfasserin |4 aut | |
700 | 1 | |a Lal, Rattan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Field crops research |d Amsterdam : Elsevier, 1978 |g 233, Seite 33-40 |h Online-Ressource |w (DE-627)32050316X |w (DE-600)2012484-3 |w (DE-576)090954912 |x 1872-6852 |7 nnns |
773 | 1 | 8 | |g volume:233 |g pages:33-40 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 48.00 |j Land- und Forstwirtschaft: Allgemeines |
951 | |a AR | ||
952 | |d 233 |h 33-40 |
author_variant |
j x jx h h hh t n tn z l zl r l rl |
---|---|
matchkey_str |
article:18726852:2019----::ogemfetotlaensrwaaeetnolraicrocoyednyed |
hierarchy_sort_str |
2019 |
bklnumber |
48.00 |
publishDate |
2019 |
allfields |
10.1016/j.fcr.2018.12.016 doi (DE-627)ELV001587005 (ELSEVIER)S0378-4290(18)30590-2 DE-627 ger DE-627 rda eng 630 640 DE-600 48.00 bkl Xu, Jing verfasserin (orcid)0000-0001-9137-7046 aut Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. Conventional tillage No-tillage Subsoiling Yield Wheat-maize system Han, Huifang verfasserin aut Ning, Tangyuan verfasserin aut Li, Zengjia verfasserin aut Lal, Rattan verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 233, Seite 33-40 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:233 pages:33-40 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.00 Land- und Forstwirtschaft: Allgemeines AR 233 33-40 |
spelling |
10.1016/j.fcr.2018.12.016 doi (DE-627)ELV001587005 (ELSEVIER)S0378-4290(18)30590-2 DE-627 ger DE-627 rda eng 630 640 DE-600 48.00 bkl Xu, Jing verfasserin (orcid)0000-0001-9137-7046 aut Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. Conventional tillage No-tillage Subsoiling Yield Wheat-maize system Han, Huifang verfasserin aut Ning, Tangyuan verfasserin aut Li, Zengjia verfasserin aut Lal, Rattan verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 233, Seite 33-40 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:233 pages:33-40 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.00 Land- und Forstwirtschaft: Allgemeines AR 233 33-40 |
allfields_unstemmed |
10.1016/j.fcr.2018.12.016 doi (DE-627)ELV001587005 (ELSEVIER)S0378-4290(18)30590-2 DE-627 ger DE-627 rda eng 630 640 DE-600 48.00 bkl Xu, Jing verfasserin (orcid)0000-0001-9137-7046 aut Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. Conventional tillage No-tillage Subsoiling Yield Wheat-maize system Han, Huifang verfasserin aut Ning, Tangyuan verfasserin aut Li, Zengjia verfasserin aut Lal, Rattan verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 233, Seite 33-40 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:233 pages:33-40 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.00 Land- und Forstwirtschaft: Allgemeines AR 233 33-40 |
allfieldsGer |
10.1016/j.fcr.2018.12.016 doi (DE-627)ELV001587005 (ELSEVIER)S0378-4290(18)30590-2 DE-627 ger DE-627 rda eng 630 640 DE-600 48.00 bkl Xu, Jing verfasserin (orcid)0000-0001-9137-7046 aut Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. Conventional tillage No-tillage Subsoiling Yield Wheat-maize system Han, Huifang verfasserin aut Ning, Tangyuan verfasserin aut Li, Zengjia verfasserin aut Lal, Rattan verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 233, Seite 33-40 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:233 pages:33-40 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.00 Land- und Forstwirtschaft: Allgemeines AR 233 33-40 |
allfieldsSound |
10.1016/j.fcr.2018.12.016 doi (DE-627)ELV001587005 (ELSEVIER)S0378-4290(18)30590-2 DE-627 ger DE-627 rda eng 630 640 DE-600 48.00 bkl Xu, Jing verfasserin (orcid)0000-0001-9137-7046 aut Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. Conventional tillage No-tillage Subsoiling Yield Wheat-maize system Han, Huifang verfasserin aut Ning, Tangyuan verfasserin aut Li, Zengjia verfasserin aut Lal, Rattan verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 233, Seite 33-40 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:233 pages:33-40 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.00 Land- und Forstwirtschaft: Allgemeines AR 233 33-40 |
language |
English |
source |
Enthalten in Field crops research 233, Seite 33-40 volume:233 pages:33-40 |
sourceStr |
Enthalten in Field crops research 233, Seite 33-40 volume:233 pages:33-40 |
format_phy_str_mv |
Article |
bklname |
Land- und Forstwirtschaft: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Conventional tillage No-tillage Subsoiling Yield Wheat-maize system |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Field crops research |
authorswithroles_txt_mv |
Xu, Jing @@aut@@ Han, Huifang @@aut@@ Ning, Tangyuan @@aut@@ Li, Zengjia @@aut@@ Lal, Rattan @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
32050316X |
dewey-sort |
3630 |
id |
ELV001587005 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001587005</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fcr.2018.12.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001587005</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-4290(18)30590-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9137-7046</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conventional tillage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">No-tillage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subsoiling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wheat-maize system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Huifang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Tangyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zengjia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lal, Rattan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Field crops research</subfield><subfield code="d">Amsterdam : Elsevier, 1978</subfield><subfield code="g">233, Seite 33-40</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32050316X</subfield><subfield code="w">(DE-600)2012484-3</subfield><subfield code="w">(DE-576)090954912</subfield><subfield code="x">1872-6852</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:233</subfield><subfield code="g">pages:33-40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">233</subfield><subfield code="h">33-40</subfield></datafield></record></collection>
|
author |
Xu, Jing |
spellingShingle |
Xu, Jing ddc 630 bkl 48.00 misc Conventional tillage misc No-tillage misc Subsoiling misc Yield misc Wheat-maize system Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system |
authorStr |
Xu, Jing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32050316X |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-6852 |
topic_title |
630 640 DE-600 48.00 bkl Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system Conventional tillage No-tillage Subsoiling Yield Wheat-maize system |
topic |
ddc 630 bkl 48.00 misc Conventional tillage misc No-tillage misc Subsoiling misc Yield misc Wheat-maize system |
topic_unstemmed |
ddc 630 bkl 48.00 misc Conventional tillage misc No-tillage misc Subsoiling misc Yield misc Wheat-maize system |
topic_browse |
ddc 630 bkl 48.00 misc Conventional tillage misc No-tillage misc Subsoiling misc Yield misc Wheat-maize system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Field crops research |
hierarchy_parent_id |
32050316X |
dewey-tens |
630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Field crops research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 |
title |
Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system |
ctrlnum |
(DE-627)ELV001587005 (ELSEVIER)S0378-4290(18)30590-2 |
title_full |
Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system |
author_sort |
Xu, Jing |
journal |
Field crops research |
journalStr |
Field crops research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
33 |
author_browse |
Xu, Jing Han, Huifang Ning, Tangyuan Li, Zengjia Lal, Rattan |
container_volume |
233 |
class |
630 640 DE-600 48.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Jing |
doi_str_mv |
10.1016/j.fcr.2018.12.016 |
normlink |
(ORCID)0000-0001-9137-7046 |
normlink_prefix_str_mv |
(orcid)0000-0001-9137-7046 |
dewey-full |
630 640 |
author2-role |
verfasserin |
title_sort |
long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system |
title_auth |
Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system |
abstract |
A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. |
abstractGer |
A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. |
abstract_unstemmed |
A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system |
remote_bool |
true |
author2 |
Han, Huifang Ning, Tangyuan Li, Zengjia Lal, Rattan |
author2Str |
Han, Huifang Ning, Tangyuan Li, Zengjia Lal, Rattan |
ppnlink |
32050316X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.fcr.2018.12.016 |
up_date |
2024-07-06T21:53:05.067Z |
_version_ |
1803868213156511744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001587005</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fcr.2018.12.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001587005</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-4290(18)30590-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9137-7046</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A long-term experiment for testing different tillage methods and straw management practices was carried out in the Northern China Plain (NCP) since 2002 in a double cropping system (winter wheat and summer maize) rotated annually. Data for 11 yr (2005–2015) was collected to compare the long-term effects of six agricultural practices on soil organic carbon (SOC) storage, crop yield, and yield stability. The six agricultural methods comprised of two main factors (i) tillage practices with three modalities—conventional tillage (CT), no-tillage (NT), and subsoiling (ST); and (ii) straw management with two modalities—straw return (S) and straw removal (0). Here, straw was usually defined as crop residue cut and removed with harvest. Finally, the six treatment combinations were represented as CT0, NT0, ST0, CTS, NTS, and STS. The SOC storage showed similar dynamic changing trends under all treatments, but was higher in NT and ST and straw return plots than in CT0 plots. Average SOC storage under STS and NTS reached 14.1, and 13.1 g kg−1, respectively. After 2005, both tillage practice and residue management affected SOC storage significantly. Cumulative yields for 11 yr with maize and wheat were higher for ST than NT and CT both with straw removal and straw return. Average crop yield increased by 6.2 and 20.1% in winter wheat and by 11.0 and 21.6% in summer maize, respectively, in ST0 and STS, when compared to CT0. NT, ST, and straw return increased crop yield stability, with STS being the most stable. Variability in STS was only 11.3% for winter wheat and 8.8% for summer maize. Pearson correlation analysis showed that winter wheat and summer maize yields were significantly and positively correlated with SOC storage. Subsoiling with straw return (STs) did not result in higher SOC than NTs after 11 yr, but it resulted in the highest cumulative yield for wheat and maize, and the highest yield stability for wheat. When straw was removed, SOC after 11 yr was highest for NT, but cumulative yields for wheat and maize were highest for ST. STS is firstly an optimal method to improve SOC storage, crop yield, and yield stability in the NCP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conventional tillage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">No-tillage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subsoiling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wheat-maize system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Huifang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Tangyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zengjia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lal, Rattan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Field crops research</subfield><subfield code="d">Amsterdam : Elsevier, 1978</subfield><subfield code="g">233, Seite 33-40</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32050316X</subfield><subfield code="w">(DE-600)2012484-3</subfield><subfield code="w">(DE-576)090954912</subfield><subfield code="x">1872-6852</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:233</subfield><subfield code="g">pages:33-40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">233</subfield><subfield code="h">33-40</subfield></datafield></record></collection>
|
score |
7.401388 |