A faster algorithm for the calculation of the fast spectral correlation
One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f...
Ausführliche Beschreibung
Autor*in: |
Borghesani, P. [verfasserIn] Antoni, J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mechanical systems and signal processing - Amsterdam [u.a.] : Elsevier, 1987, 111, Seite 113-118 |
---|---|
Übergeordnetes Werk: |
volume:111 ; pages:113-118 |
DOI / URN: |
10.1016/j.ymssp.2018.03.059 |
---|
Katalog-ID: |
ELV001615327 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001615327 | ||
003 | DE-627 | ||
005 | 20230524154742.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ymssp.2018.03.059 |2 doi | |
035 | |a (DE-627)ELV001615327 | ||
035 | |a (ELSEVIER)S0888-3270(18)30186-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 50.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Borghesani, P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A faster algorithm for the calculation of the fast spectral correlation |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. | ||
650 | 4 | |a Cyclostationarity | |
650 | 4 | |a Spectral correlation | |
650 | 4 | |a Fast spectral correlation | |
700 | 1 | |a Antoni, J. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mechanical systems and signal processing |d Amsterdam [u.a.] : Elsevier, 1987 |g 111, Seite 113-118 |h Online-Ressource |w (DE-627)267838670 |w (DE-600)1471003-1 |w (DE-576)253127629 |x 1096-1216 |7 nnns |
773 | 1 | 8 | |g volume:111 |g pages:113-118 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.32 |j Dynamik |j Schwingungslehre |x Technische Mechanik |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |
951 | |a AR | ||
952 | |d 111 |h 113-118 |
author_variant |
p b pb j a ja |
---|---|
matchkey_str |
article:10961216:2018----::fseagrtmoteacltooteatp |
hierarchy_sort_str |
2018 |
bklnumber |
50.32 50.16 |
publishDate |
2018 |
allfields |
10.1016/j.ymssp.2018.03.059 doi (DE-627)ELV001615327 (ELSEVIER)S0888-3270(18)30186-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Borghesani, P. verfasserin aut A faster algorithm for the calculation of the fast spectral correlation 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. Cyclostationarity Spectral correlation Fast spectral correlation Antoni, J. verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 111, Seite 113-118 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:111 pages:113-118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 111 113-118 |
spelling |
10.1016/j.ymssp.2018.03.059 doi (DE-627)ELV001615327 (ELSEVIER)S0888-3270(18)30186-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Borghesani, P. verfasserin aut A faster algorithm for the calculation of the fast spectral correlation 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. Cyclostationarity Spectral correlation Fast spectral correlation Antoni, J. verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 111, Seite 113-118 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:111 pages:113-118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 111 113-118 |
allfields_unstemmed |
10.1016/j.ymssp.2018.03.059 doi (DE-627)ELV001615327 (ELSEVIER)S0888-3270(18)30186-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Borghesani, P. verfasserin aut A faster algorithm for the calculation of the fast spectral correlation 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. Cyclostationarity Spectral correlation Fast spectral correlation Antoni, J. verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 111, Seite 113-118 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:111 pages:113-118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 111 113-118 |
allfieldsGer |
10.1016/j.ymssp.2018.03.059 doi (DE-627)ELV001615327 (ELSEVIER)S0888-3270(18)30186-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Borghesani, P. verfasserin aut A faster algorithm for the calculation of the fast spectral correlation 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. Cyclostationarity Spectral correlation Fast spectral correlation Antoni, J. verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 111, Seite 113-118 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:111 pages:113-118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 111 113-118 |
allfieldsSound |
10.1016/j.ymssp.2018.03.059 doi (DE-627)ELV001615327 (ELSEVIER)S0888-3270(18)30186-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Borghesani, P. verfasserin aut A faster algorithm for the calculation of the fast spectral correlation 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. Cyclostationarity Spectral correlation Fast spectral correlation Antoni, J. verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 111, Seite 113-118 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:111 pages:113-118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 111 113-118 |
language |
English |
source |
Enthalten in Mechanical systems and signal processing 111, Seite 113-118 volume:111 pages:113-118 |
sourceStr |
Enthalten in Mechanical systems and signal processing 111, Seite 113-118 volume:111 pages:113-118 |
format_phy_str_mv |
Article |
bklname |
Dynamik Schwingungslehre Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Cyclostationarity Spectral correlation Fast spectral correlation |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Mechanical systems and signal processing |
authorswithroles_txt_mv |
Borghesani, P. @@aut@@ Antoni, J. @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
267838670 |
dewey-sort |
14 |
id |
ELV001615327 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001615327</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2018.03.059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001615327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(18)30186-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borghesani, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A faster algorithm for the calculation of the fast spectral correlation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclostationarity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast spectral correlation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antoni, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanical systems and signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1987</subfield><subfield code="g">111, Seite 113-118</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267838670</subfield><subfield code="w">(DE-600)1471003-1</subfield><subfield code="w">(DE-576)253127629</subfield><subfield code="x">1096-1216</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">pages:113-118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="h">113-118</subfield></datafield></record></collection>
|
author |
Borghesani, P. |
spellingShingle |
Borghesani, P. ddc 004 bkl 50.32 bkl 50.16 misc Cyclostationarity misc Spectral correlation misc Fast spectral correlation A faster algorithm for the calculation of the fast spectral correlation |
authorStr |
Borghesani, P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)267838670 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1096-1216 |
topic_title |
004 DE-600 50.32 bkl 50.16 bkl A faster algorithm for the calculation of the fast spectral correlation Cyclostationarity Spectral correlation Fast spectral correlation |
topic |
ddc 004 bkl 50.32 bkl 50.16 misc Cyclostationarity misc Spectral correlation misc Fast spectral correlation |
topic_unstemmed |
ddc 004 bkl 50.32 bkl 50.16 misc Cyclostationarity misc Spectral correlation misc Fast spectral correlation |
topic_browse |
ddc 004 bkl 50.32 bkl 50.16 misc Cyclostationarity misc Spectral correlation misc Fast spectral correlation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mechanical systems and signal processing |
hierarchy_parent_id |
267838670 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Mechanical systems and signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 |
title |
A faster algorithm for the calculation of the fast spectral correlation |
ctrlnum |
(DE-627)ELV001615327 (ELSEVIER)S0888-3270(18)30186-9 |
title_full |
A faster algorithm for the calculation of the fast spectral correlation |
author_sort |
Borghesani, P. |
journal |
Mechanical systems and signal processing |
journalStr |
Mechanical systems and signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
113 |
author_browse |
Borghesani, P. Antoni, J. |
container_volume |
111 |
class |
004 DE-600 50.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Borghesani, P. |
doi_str_mv |
10.1016/j.ymssp.2018.03.059 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
a faster algorithm for the calculation of the fast spectral correlation |
title_auth |
A faster algorithm for the calculation of the fast spectral correlation |
abstract |
One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. |
abstractGer |
One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. |
abstract_unstemmed |
One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A faster algorithm for the calculation of the fast spectral correlation |
remote_bool |
true |
author2 |
Antoni, J. |
author2Str |
Antoni, J. |
ppnlink |
267838670 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ymssp.2018.03.059 |
up_date |
2024-07-06T21:58:55.629Z |
_version_ |
1803868580747411456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001615327</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2018.03.059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001615327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(18)30186-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borghesani, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A faster algorithm for the calculation of the fast spectral correlation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the main aims of second order cyclostationary (CS2) analysis is the estimation of the full spectral correlation, allowing the identification of different CS2 components in a signal and their characterisation in terms of both spectral frequency f and cyclic frequency α . Unfortunately, traditional estimators of the full spectral correlation (e.g. averaged cyclic periodogram) are highly computationally expensive and hence their application has been quite limited. On the other hand, fast envelope-based CS2 indicators (e.g. cyclic modulation spectrum, CMS) are bound by a cyclic-spectral form of the uncertainty principle, which limits the extent of the cyclic frequency axis α max at approximately the value chosen for the spectral frequency axis resolution Δ f . A recent work has however introduced a ground-breaking approach resulting in a fast algorithm for the calculation of the spectral correlation. This approach is based on the calculation of a series of CMS-like quantities, each scanning a different cyclic-frequency band, given a certain spectral frequency resolution. The superposition of all these quantities allows covering a larger α -band breaking the constraint between maximum cyclic frequency α max and spectral frequency axis resolution Δ f , at a limited computational cost. In this paper a new algorithm for the calculation of the same fast spectral correlation is introduced, resulting in a further computational efficiency gain, and a simplification of the computational procedure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclostationarity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast spectral correlation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antoni, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanical systems and signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1987</subfield><subfield code="g">111, Seite 113-118</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267838670</subfield><subfield code="w">(DE-600)1471003-1</subfield><subfield code="w">(DE-576)253127629</subfield><subfield code="x">1096-1216</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">pages:113-118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="h">113-118</subfield></datafield></record></collection>
|
score |
7.3994074 |