Models of breast lesions based on three-dimensional X-ray breast images
This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensit...
Ausführliche Beschreibung
Autor*in: |
Dukov, Nikolay [verfasserIn] Bliznakova, Kristina [verfasserIn] Feradov, Firgan [verfasserIn] Buliev, Ivan [verfasserIn] Bosmans, Hilde [verfasserIn] Mettivier, Giovanni [verfasserIn] Russo, Paolo [verfasserIn] Cockmartin, Lesley [verfasserIn] Bliznakov, Zhivko [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Physica medica - Amsterdam : Elsevier, 1996, 57, Seite 80-87 |
---|---|
Übergeordnetes Werk: |
volume:57 ; pages:80-87 |
DOI / URN: |
10.1016/j.ejmp.2018.12.012 |
---|
Katalog-ID: |
ELV001628356 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001628356 | ||
003 | DE-627 | ||
005 | 20230524163010.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ejmp.2018.12.012 |2 doi | |
035 | |a (DE-627)ELV001628356 | ||
035 | |a (ELSEVIER)S1120-1797(18)31348-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 610 |q DE-600 |
084 | |a 44.31 |2 bkl | ||
100 | 1 | |a Dukov, Nikolay |e verfasserin |0 (orcid)0000-0003-2697-6194 |4 aut | |
245 | 1 | 0 | |a Models of breast lesions based on three-dimensional X-ray breast images |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. | ||
650 | 4 | |a Breast lesions | |
650 | 4 | |a Segmentation | |
650 | 4 | |a Breast tomosynthesis | |
650 | 4 | |a Dice similarity coefficients | |
700 | 1 | |a Bliznakova, Kristina |e verfasserin |0 (orcid)0000-0002-3630-5936 |4 aut | |
700 | 1 | |a Feradov, Firgan |e verfasserin |4 aut | |
700 | 1 | |a Buliev, Ivan |e verfasserin |4 aut | |
700 | 1 | |a Bosmans, Hilde |e verfasserin |4 aut | |
700 | 1 | |a Mettivier, Giovanni |e verfasserin |0 (orcid)0000-0001-6606-4304 |4 aut | |
700 | 1 | |a Russo, Paolo |e verfasserin |4 aut | |
700 | 1 | |a Cockmartin, Lesley |e verfasserin |4 aut | |
700 | 1 | |a Bliznakov, Zhivko |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physica medica |d Amsterdam : Elsevier, 1996 |g 57, Seite 80-87 |h Online-Ressource |w (DE-627)364471417 |w (DE-600)2110535-2 |w (DE-576)272350176 |x 1724-191X |7 nnns |
773 | 1 | 8 | |g volume:57 |g pages:80-87 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 44.31 |j Medizinische Physik |
951 | |a AR | ||
952 | |d 57 |h 80-87 |
author_variant |
n d nd k b kb f f ff i b ib h b hb g m gm p r pr l c lc z b zb |
---|---|
matchkey_str |
article:1724191X:2018----::oesfrateinbsdnhedmninl |
hierarchy_sort_str |
2018 |
bklnumber |
44.31 |
publishDate |
2018 |
allfields |
10.1016/j.ejmp.2018.12.012 doi (DE-627)ELV001628356 (ELSEVIER)S1120-1797(18)31348-6 DE-627 ger DE-627 rda eng 530 610 DE-600 44.31 bkl Dukov, Nikolay verfasserin (orcid)0000-0003-2697-6194 aut Models of breast lesions based on three-dimensional X-ray breast images 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. Breast lesions Segmentation Breast tomosynthesis Dice similarity coefficients Bliznakova, Kristina verfasserin (orcid)0000-0002-3630-5936 aut Feradov, Firgan verfasserin aut Buliev, Ivan verfasserin aut Bosmans, Hilde verfasserin aut Mettivier, Giovanni verfasserin (orcid)0000-0001-6606-4304 aut Russo, Paolo verfasserin aut Cockmartin, Lesley verfasserin aut Bliznakov, Zhivko verfasserin aut Enthalten in Physica medica Amsterdam : Elsevier, 1996 57, Seite 80-87 Online-Ressource (DE-627)364471417 (DE-600)2110535-2 (DE-576)272350176 1724-191X nnns volume:57 pages:80-87 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.31 Medizinische Physik AR 57 80-87 |
spelling |
10.1016/j.ejmp.2018.12.012 doi (DE-627)ELV001628356 (ELSEVIER)S1120-1797(18)31348-6 DE-627 ger DE-627 rda eng 530 610 DE-600 44.31 bkl Dukov, Nikolay verfasserin (orcid)0000-0003-2697-6194 aut Models of breast lesions based on three-dimensional X-ray breast images 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. Breast lesions Segmentation Breast tomosynthesis Dice similarity coefficients Bliznakova, Kristina verfasserin (orcid)0000-0002-3630-5936 aut Feradov, Firgan verfasserin aut Buliev, Ivan verfasserin aut Bosmans, Hilde verfasserin aut Mettivier, Giovanni verfasserin (orcid)0000-0001-6606-4304 aut Russo, Paolo verfasserin aut Cockmartin, Lesley verfasserin aut Bliznakov, Zhivko verfasserin aut Enthalten in Physica medica Amsterdam : Elsevier, 1996 57, Seite 80-87 Online-Ressource (DE-627)364471417 (DE-600)2110535-2 (DE-576)272350176 1724-191X nnns volume:57 pages:80-87 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.31 Medizinische Physik AR 57 80-87 |
allfields_unstemmed |
10.1016/j.ejmp.2018.12.012 doi (DE-627)ELV001628356 (ELSEVIER)S1120-1797(18)31348-6 DE-627 ger DE-627 rda eng 530 610 DE-600 44.31 bkl Dukov, Nikolay verfasserin (orcid)0000-0003-2697-6194 aut Models of breast lesions based on three-dimensional X-ray breast images 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. Breast lesions Segmentation Breast tomosynthesis Dice similarity coefficients Bliznakova, Kristina verfasserin (orcid)0000-0002-3630-5936 aut Feradov, Firgan verfasserin aut Buliev, Ivan verfasserin aut Bosmans, Hilde verfasserin aut Mettivier, Giovanni verfasserin (orcid)0000-0001-6606-4304 aut Russo, Paolo verfasserin aut Cockmartin, Lesley verfasserin aut Bliznakov, Zhivko verfasserin aut Enthalten in Physica medica Amsterdam : Elsevier, 1996 57, Seite 80-87 Online-Ressource (DE-627)364471417 (DE-600)2110535-2 (DE-576)272350176 1724-191X nnns volume:57 pages:80-87 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.31 Medizinische Physik AR 57 80-87 |
allfieldsGer |
10.1016/j.ejmp.2018.12.012 doi (DE-627)ELV001628356 (ELSEVIER)S1120-1797(18)31348-6 DE-627 ger DE-627 rda eng 530 610 DE-600 44.31 bkl Dukov, Nikolay verfasserin (orcid)0000-0003-2697-6194 aut Models of breast lesions based on three-dimensional X-ray breast images 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. Breast lesions Segmentation Breast tomosynthesis Dice similarity coefficients Bliznakova, Kristina verfasserin (orcid)0000-0002-3630-5936 aut Feradov, Firgan verfasserin aut Buliev, Ivan verfasserin aut Bosmans, Hilde verfasserin aut Mettivier, Giovanni verfasserin (orcid)0000-0001-6606-4304 aut Russo, Paolo verfasserin aut Cockmartin, Lesley verfasserin aut Bliznakov, Zhivko verfasserin aut Enthalten in Physica medica Amsterdam : Elsevier, 1996 57, Seite 80-87 Online-Ressource (DE-627)364471417 (DE-600)2110535-2 (DE-576)272350176 1724-191X nnns volume:57 pages:80-87 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.31 Medizinische Physik AR 57 80-87 |
allfieldsSound |
10.1016/j.ejmp.2018.12.012 doi (DE-627)ELV001628356 (ELSEVIER)S1120-1797(18)31348-6 DE-627 ger DE-627 rda eng 530 610 DE-600 44.31 bkl Dukov, Nikolay verfasserin (orcid)0000-0003-2697-6194 aut Models of breast lesions based on three-dimensional X-ray breast images 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. Breast lesions Segmentation Breast tomosynthesis Dice similarity coefficients Bliznakova, Kristina verfasserin (orcid)0000-0002-3630-5936 aut Feradov, Firgan verfasserin aut Buliev, Ivan verfasserin aut Bosmans, Hilde verfasserin aut Mettivier, Giovanni verfasserin (orcid)0000-0001-6606-4304 aut Russo, Paolo verfasserin aut Cockmartin, Lesley verfasserin aut Bliznakov, Zhivko verfasserin aut Enthalten in Physica medica Amsterdam : Elsevier, 1996 57, Seite 80-87 Online-Ressource (DE-627)364471417 (DE-600)2110535-2 (DE-576)272350176 1724-191X nnns volume:57 pages:80-87 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.31 Medizinische Physik AR 57 80-87 |
language |
English |
source |
Enthalten in Physica medica 57, Seite 80-87 volume:57 pages:80-87 |
sourceStr |
Enthalten in Physica medica 57, Seite 80-87 volume:57 pages:80-87 |
format_phy_str_mv |
Article |
bklname |
Medizinische Physik |
institution |
findex.gbv.de |
topic_facet |
Breast lesions Segmentation Breast tomosynthesis Dice similarity coefficients |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physica medica |
authorswithroles_txt_mv |
Dukov, Nikolay @@aut@@ Bliznakova, Kristina @@aut@@ Feradov, Firgan @@aut@@ Buliev, Ivan @@aut@@ Bosmans, Hilde @@aut@@ Mettivier, Giovanni @@aut@@ Russo, Paolo @@aut@@ Cockmartin, Lesley @@aut@@ Bliznakov, Zhivko @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
364471417 |
dewey-sort |
3530 |
id |
ELV001628356 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001628356</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524163010.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejmp.2018.12.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001628356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1120-1797(18)31348-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dukov, Nikolay</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2697-6194</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Models of breast lesions based on three-dimensional X-ray breast images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast lesions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast tomosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dice similarity coefficients</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bliznakova, Kristina</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3630-5936</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feradov, Firgan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buliev, Ivan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bosmans, Hilde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mettivier, Giovanni</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6606-4304</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Paolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cockmartin, Lesley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bliznakov, Zhivko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica medica</subfield><subfield code="d">Amsterdam : Elsevier, 1996</subfield><subfield code="g">57, Seite 80-87</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)364471417</subfield><subfield code="w">(DE-600)2110535-2</subfield><subfield code="w">(DE-576)272350176</subfield><subfield code="x">1724-191X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">pages:80-87</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.31</subfield><subfield code="j">Medizinische Physik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="h">80-87</subfield></datafield></record></collection>
|
author |
Dukov, Nikolay |
spellingShingle |
Dukov, Nikolay ddc 530 bkl 44.31 misc Breast lesions misc Segmentation misc Breast tomosynthesis misc Dice similarity coefficients Models of breast lesions based on three-dimensional X-ray breast images |
authorStr |
Dukov, Nikolay |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)364471417 |
format |
electronic Article |
dewey-ones |
530 - Physics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1724-191X |
topic_title |
530 610 DE-600 44.31 bkl Models of breast lesions based on three-dimensional X-ray breast images Breast lesions Segmentation Breast tomosynthesis Dice similarity coefficients |
topic |
ddc 530 bkl 44.31 misc Breast lesions misc Segmentation misc Breast tomosynthesis misc Dice similarity coefficients |
topic_unstemmed |
ddc 530 bkl 44.31 misc Breast lesions misc Segmentation misc Breast tomosynthesis misc Dice similarity coefficients |
topic_browse |
ddc 530 bkl 44.31 misc Breast lesions misc Segmentation misc Breast tomosynthesis misc Dice similarity coefficients |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physica medica |
hierarchy_parent_id |
364471417 |
dewey-tens |
530 - Physics 610 - Medicine & health |
hierarchy_top_title |
Physica medica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)364471417 (DE-600)2110535-2 (DE-576)272350176 |
title |
Models of breast lesions based on three-dimensional X-ray breast images |
ctrlnum |
(DE-627)ELV001628356 (ELSEVIER)S1120-1797(18)31348-6 |
title_full |
Models of breast lesions based on three-dimensional X-ray breast images |
author_sort |
Dukov, Nikolay |
journal |
Physica medica |
journalStr |
Physica medica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
80 |
author_browse |
Dukov, Nikolay Bliznakova, Kristina Feradov, Firgan Buliev, Ivan Bosmans, Hilde Mettivier, Giovanni Russo, Paolo Cockmartin, Lesley Bliznakov, Zhivko |
container_volume |
57 |
class |
530 610 DE-600 44.31 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dukov, Nikolay |
doi_str_mv |
10.1016/j.ejmp.2018.12.012 |
normlink |
(ORCID)0000-0003-2697-6194 (ORCID)0000-0002-3630-5936 (ORCID)0000-0001-6606-4304 |
normlink_prefix_str_mv |
(orcid)0000-0003-2697-6194 (orcid)0000-0002-3630-5936 (orcid)0000-0001-6606-4304 |
dewey-full |
530 610 |
author2-role |
verfasserin |
title_sort |
models of breast lesions based on three-dimensional x-ray breast images |
title_auth |
Models of breast lesions based on three-dimensional X-ray breast images |
abstract |
This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. |
abstractGer |
This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. |
abstract_unstemmed |
This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Models of breast lesions based on three-dimensional X-ray breast images |
remote_bool |
true |
author2 |
Bliznakova, Kristina Feradov, Firgan Buliev, Ivan Bosmans, Hilde Mettivier, Giovanni Russo, Paolo Cockmartin, Lesley Bliznakov, Zhivko |
author2Str |
Bliznakova, Kristina Feradov, Firgan Buliev, Ivan Bosmans, Hilde Mettivier, Giovanni Russo, Paolo Cockmartin, Lesley Bliznakov, Zhivko |
ppnlink |
364471417 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ejmp.2018.12.012 |
up_date |
2024-07-06T22:01:37.150Z |
_version_ |
1803868750114455552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001628356</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524163010.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejmp.2018.12.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001628356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1120-1797(18)31348-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dukov, Nikolay</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2697-6194</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Models of breast lesions based on three-dimensional X-ray breast images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a method for creation of computational models of breast lesions with irregular shapes from patient Digital Breast Tomosynthesis (DBT) images or breast cadavers and whole-body Computed Tomography (CT) images. The approach includes six basic steps: (a) normalization of the intensity of the tomographic images; (b) image noise reduction; (c) binarization of the lesion area, (d) application of morphological operations to further decrease the level of artefacts; (e) application of a region growing technique to segment the lesion; and (f) creation of a final 3D lesion model. The algorithm is semi-automatic as the initial selection of the region of the lesion and the seeds for the region growing are done interactively. A software tool, performing all of the required steps, was developed in MATLAB. The method was tested and evaluated by analysing anonymized sets of DBT patient images diagnosed with lesions. Experienced radiologists evaluated the segmentation of the tumours in the slices and the obtained 3D lesion shapes. They concluded for a quite satisfactory delineation of the lesions. In addition, for three DBT cases, a delineation of the tumours was performed independently by the radiologists. In all cases the abnormality volumes segmented by the proposed algorithm were smaller than those outlined by the experts. The calculated Dice similarity coefficients for algorithm-radiologist and radiologist-radiologist showed similar values. Another selected tumour case was introduced into a computational breast model to recursively assess the algorithm. The relative volume difference between the ground-truth tumour volume and the one obtained by applying the algorithm on the synthetic volume from the virtual DBT study is 5% which demonstrates the satisfactory performance of the proposed segmentation algorithm. The software tool we developed was used to create models of different breast abnormalities, which were then stored in a database for use by researchers working in this field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast lesions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast tomosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dice similarity coefficients</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bliznakova, Kristina</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3630-5936</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feradov, Firgan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buliev, Ivan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bosmans, Hilde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mettivier, Giovanni</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6606-4304</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Paolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cockmartin, Lesley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bliznakov, Zhivko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica medica</subfield><subfield code="d">Amsterdam : Elsevier, 1996</subfield><subfield code="g">57, Seite 80-87</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)364471417</subfield><subfield code="w">(DE-600)2110535-2</subfield><subfield code="w">(DE-576)272350176</subfield><subfield code="x">1724-191X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">pages:80-87</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.31</subfield><subfield code="j">Medizinische Physik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="h">80-87</subfield></datafield></record></collection>
|
score |
7.3995523 |