Hydration of lignocellulosic biomass. Modelling and experimental validation
This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lig...
Ausführliche Beschreibung
Autor*in: |
Sanchez, A. [verfasserIn] Hernández-Sánchez, P. [verfasserIn] Puente, R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Industrial crops and products - New York, NY [u.a.] : Elsevier, 1992, 131, Seite 70-77 |
---|---|
Übergeordnetes Werk: |
volume:131 ; pages:70-77 |
DOI / URN: |
10.1016/j.indcrop.2019.01.029 |
---|
Katalog-ID: |
ELV001743686 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001743686 | ||
003 | DE-627 | ||
005 | 20230524143853.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.indcrop.2019.01.029 |2 doi | |
035 | |a (DE-627)ELV001743686 | ||
035 | |a (ELSEVIER)S0926-6690(19)30036-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |q DE-600 |
084 | |a 48.30 |2 bkl | ||
100 | 1 | |a Sanchez, A. |e verfasserin |0 (orcid)0000-0001-5453-0478 |4 aut | |
245 | 1 | 0 | |a Hydration of lignocellulosic biomass. Modelling and experimental validation |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. | ||
650 | 4 | |a Lignocellulosic biomass | |
650 | 4 | |a Water holding capacity | |
650 | 4 | |a Water retention capacity | |
650 | 4 | |a Hydration time | |
650 | 4 | |a Langmuir isotherm | |
700 | 1 | |a Hernández-Sánchez, P. |e verfasserin |4 aut | |
700 | 1 | |a Puente, R. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Industrial crops and products |d New York, NY [u.a.] : Elsevier, 1992 |g 131, Seite 70-77 |h Online-Ressource |w (DE-627)300894678 |w (DE-600)1483245-8 |w (DE-576)259270792 |x 1872-633X |7 nnns |
773 | 1 | 8 | |g volume:131 |g pages:70-77 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 48.30 |j Natürliche Ressourcen |x Land- und Forstwirtschaft |
951 | |a AR | ||
952 | |d 131 |h 70-77 |
author_variant |
a s as p h s phs r p rp |
---|---|
matchkey_str |
article:1872633X:2019----::yrtoolgoellscimsmdlignep |
hierarchy_sort_str |
2019 |
bklnumber |
48.30 |
publishDate |
2019 |
allfields |
10.1016/j.indcrop.2019.01.029 doi (DE-627)ELV001743686 (ELSEVIER)S0926-6690(19)30036-6 DE-627 ger DE-627 rda eng 630 640 DE-600 48.30 bkl Sanchez, A. verfasserin (orcid)0000-0001-5453-0478 aut Hydration of lignocellulosic biomass. Modelling and experimental validation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. Lignocellulosic biomass Water holding capacity Water retention capacity Hydration time Langmuir isotherm Hernández-Sánchez, P. verfasserin aut Puente, R. verfasserin aut Enthalten in Industrial crops and products New York, NY [u.a.] : Elsevier, 1992 131, Seite 70-77 Online-Ressource (DE-627)300894678 (DE-600)1483245-8 (DE-576)259270792 1872-633X nnns volume:131 pages:70-77 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.30 Natürliche Ressourcen Land- und Forstwirtschaft AR 131 70-77 |
spelling |
10.1016/j.indcrop.2019.01.029 doi (DE-627)ELV001743686 (ELSEVIER)S0926-6690(19)30036-6 DE-627 ger DE-627 rda eng 630 640 DE-600 48.30 bkl Sanchez, A. verfasserin (orcid)0000-0001-5453-0478 aut Hydration of lignocellulosic biomass. Modelling and experimental validation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. Lignocellulosic biomass Water holding capacity Water retention capacity Hydration time Langmuir isotherm Hernández-Sánchez, P. verfasserin aut Puente, R. verfasserin aut Enthalten in Industrial crops and products New York, NY [u.a.] : Elsevier, 1992 131, Seite 70-77 Online-Ressource (DE-627)300894678 (DE-600)1483245-8 (DE-576)259270792 1872-633X nnns volume:131 pages:70-77 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.30 Natürliche Ressourcen Land- und Forstwirtschaft AR 131 70-77 |
allfields_unstemmed |
10.1016/j.indcrop.2019.01.029 doi (DE-627)ELV001743686 (ELSEVIER)S0926-6690(19)30036-6 DE-627 ger DE-627 rda eng 630 640 DE-600 48.30 bkl Sanchez, A. verfasserin (orcid)0000-0001-5453-0478 aut Hydration of lignocellulosic biomass. Modelling and experimental validation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. Lignocellulosic biomass Water holding capacity Water retention capacity Hydration time Langmuir isotherm Hernández-Sánchez, P. verfasserin aut Puente, R. verfasserin aut Enthalten in Industrial crops and products New York, NY [u.a.] : Elsevier, 1992 131, Seite 70-77 Online-Ressource (DE-627)300894678 (DE-600)1483245-8 (DE-576)259270792 1872-633X nnns volume:131 pages:70-77 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.30 Natürliche Ressourcen Land- und Forstwirtschaft AR 131 70-77 |
allfieldsGer |
10.1016/j.indcrop.2019.01.029 doi (DE-627)ELV001743686 (ELSEVIER)S0926-6690(19)30036-6 DE-627 ger DE-627 rda eng 630 640 DE-600 48.30 bkl Sanchez, A. verfasserin (orcid)0000-0001-5453-0478 aut Hydration of lignocellulosic biomass. Modelling and experimental validation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. Lignocellulosic biomass Water holding capacity Water retention capacity Hydration time Langmuir isotherm Hernández-Sánchez, P. verfasserin aut Puente, R. verfasserin aut Enthalten in Industrial crops and products New York, NY [u.a.] : Elsevier, 1992 131, Seite 70-77 Online-Ressource (DE-627)300894678 (DE-600)1483245-8 (DE-576)259270792 1872-633X nnns volume:131 pages:70-77 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.30 Natürliche Ressourcen Land- und Forstwirtschaft AR 131 70-77 |
allfieldsSound |
10.1016/j.indcrop.2019.01.029 doi (DE-627)ELV001743686 (ELSEVIER)S0926-6690(19)30036-6 DE-627 ger DE-627 rda eng 630 640 DE-600 48.30 bkl Sanchez, A. verfasserin (orcid)0000-0001-5453-0478 aut Hydration of lignocellulosic biomass. Modelling and experimental validation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. Lignocellulosic biomass Water holding capacity Water retention capacity Hydration time Langmuir isotherm Hernández-Sánchez, P. verfasserin aut Puente, R. verfasserin aut Enthalten in Industrial crops and products New York, NY [u.a.] : Elsevier, 1992 131, Seite 70-77 Online-Ressource (DE-627)300894678 (DE-600)1483245-8 (DE-576)259270792 1872-633X nnns volume:131 pages:70-77 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 48.30 Natürliche Ressourcen Land- und Forstwirtschaft AR 131 70-77 |
language |
English |
source |
Enthalten in Industrial crops and products 131, Seite 70-77 volume:131 pages:70-77 |
sourceStr |
Enthalten in Industrial crops and products 131, Seite 70-77 volume:131 pages:70-77 |
format_phy_str_mv |
Article |
bklname |
Natürliche Ressourcen |
institution |
findex.gbv.de |
topic_facet |
Lignocellulosic biomass Water holding capacity Water retention capacity Hydration time Langmuir isotherm |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Industrial crops and products |
authorswithroles_txt_mv |
Sanchez, A. @@aut@@ Hernández-Sánchez, P. @@aut@@ Puente, R. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
300894678 |
dewey-sort |
3630 |
id |
ELV001743686 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001743686</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143853.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.indcrop.2019.01.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001743686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0926-6690(19)30036-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanchez, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5453-0478</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydration of lignocellulosic biomass. Modelling and experimental validation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lignocellulosic biomass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water holding capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water retention capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydration time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Langmuir isotherm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hernández-Sánchez, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puente, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Industrial crops and products</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1992</subfield><subfield code="g">131, Seite 70-77</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300894678</subfield><subfield code="w">(DE-600)1483245-8</subfield><subfield code="w">(DE-576)259270792</subfield><subfield code="x">1872-633X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:131</subfield><subfield code="g">pages:70-77</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.30</subfield><subfield code="j">Natürliche Ressourcen</subfield><subfield code="x">Land- und Forstwirtschaft</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">131</subfield><subfield code="h">70-77</subfield></datafield></record></collection>
|
author |
Sanchez, A. |
spellingShingle |
Sanchez, A. ddc 630 bkl 48.30 misc Lignocellulosic biomass misc Water holding capacity misc Water retention capacity misc Hydration time misc Langmuir isotherm Hydration of lignocellulosic biomass. Modelling and experimental validation |
authorStr |
Sanchez, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300894678 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-633X |
topic_title |
630 640 DE-600 48.30 bkl Hydration of lignocellulosic biomass. Modelling and experimental validation Lignocellulosic biomass Water holding capacity Water retention capacity Hydration time Langmuir isotherm |
topic |
ddc 630 bkl 48.30 misc Lignocellulosic biomass misc Water holding capacity misc Water retention capacity misc Hydration time misc Langmuir isotherm |
topic_unstemmed |
ddc 630 bkl 48.30 misc Lignocellulosic biomass misc Water holding capacity misc Water retention capacity misc Hydration time misc Langmuir isotherm |
topic_browse |
ddc 630 bkl 48.30 misc Lignocellulosic biomass misc Water holding capacity misc Water retention capacity misc Hydration time misc Langmuir isotherm |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Industrial crops and products |
hierarchy_parent_id |
300894678 |
dewey-tens |
630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Industrial crops and products |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300894678 (DE-600)1483245-8 (DE-576)259270792 |
title |
Hydration of lignocellulosic biomass. Modelling and experimental validation |
ctrlnum |
(DE-627)ELV001743686 (ELSEVIER)S0926-6690(19)30036-6 |
title_full |
Hydration of lignocellulosic biomass. Modelling and experimental validation |
author_sort |
Sanchez, A. |
journal |
Industrial crops and products |
journalStr |
Industrial crops and products |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
70 |
author_browse |
Sanchez, A. Hernández-Sánchez, P. Puente, R. |
container_volume |
131 |
class |
630 640 DE-600 48.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sanchez, A. |
doi_str_mv |
10.1016/j.indcrop.2019.01.029 |
normlink |
(ORCID)0000-0001-5453-0478 |
normlink_prefix_str_mv |
(orcid)0000-0001-5453-0478 |
dewey-full |
630 640 |
author2-role |
verfasserin |
title_sort |
hydration of lignocellulosic biomass. modelling and experimental validation |
title_auth |
Hydration of lignocellulosic biomass. Modelling and experimental validation |
abstract |
This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. |
abstractGer |
This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. |
abstract_unstemmed |
This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Hydration of lignocellulosic biomass. Modelling and experimental validation |
remote_bool |
true |
author2 |
Hernández-Sánchez, P. Puente, R. |
author2Str |
Hernández-Sánchez, P. Puente, R. |
ppnlink |
300894678 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.indcrop.2019.01.029 |
up_date |
2024-07-06T22:25:20.843Z |
_version_ |
1803870242964766720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001743686</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143853.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.indcrop.2019.01.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001743686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0926-6690(19)30036-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanchez, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5453-0478</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydration of lignocellulosic biomass. Modelling and experimental validation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This document studies the hydration dynamics of five lignocellulosic biomasses (sorghum and wheat straws, corn stover, agave and sugarcane bagasses) commonly used as feedstock in biorefining processes. Water holding and water retention capacities are measured for different particle sizes of each lignocellulosic biomass at different hydration times under isothermal conditions. Water holding capacity exhibits a first-order dynamic behaviour fitting a Langmuir isotherm as a function of hydration time. The two isotherm constants are interpreted as the maximum water holding value of the lignocellulosic biomass (α) and the time typically required to reach it (β), fitting experimental data with high correlation factors (0.981–0.998). Equilibrium hydration values differ greatly for each biomass and particle size, demonstrating that holding and retention capacities are associated to biomass type and surface size. The relationship between hydration with pH decay and glucose release due to microbial and fungal activity during hydration dynamics was also evaluated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lignocellulosic biomass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water holding capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water retention capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydration time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Langmuir isotherm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hernández-Sánchez, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puente, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Industrial crops and products</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1992</subfield><subfield code="g">131, Seite 70-77</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300894678</subfield><subfield code="w">(DE-600)1483245-8</subfield><subfield code="w">(DE-576)259270792</subfield><subfield code="x">1872-633X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:131</subfield><subfield code="g">pages:70-77</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.30</subfield><subfield code="j">Natürliche Ressourcen</subfield><subfield code="x">Land- und Forstwirtschaft</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">131</subfield><subfield code="h">70-77</subfield></datafield></record></collection>
|
score |
7.401457 |