Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes
Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor mat...
Ausführliche Beschreibung
Autor*in: |
Chu, Liang [verfasserIn] Liu, Wei [verfasserIn] Qin, Zhengfei [verfasserIn] Zhang, Rui [verfasserIn] Hu, Ruiyuan [verfasserIn] Yang, Jian [verfasserIn] Yang, Jianping [verfasserIn] Li, Xing'ao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solar energy materials & solar cells - Amsterdam [u.a.] : NH, Elsevier, 1992, 178, Seite 164-169 |
---|---|
Übergeordnetes Werk: |
volume:178 ; pages:164-169 |
DOI / URN: |
10.1016/j.solmat.2018.01.010 |
---|
Katalog-ID: |
ELV001897470 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001897470 | ||
003 | DE-627 | ||
005 | 20230524152032.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.solmat.2018.01.010 |2 doi | |
035 | |a (DE-627)ELV001897470 | ||
035 | |a (ELSEVIER)S0927-0248(18)30009-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 53.36 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.56 |2 bkl | ||
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Chu, Liang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. | ||
650 | 4 | |a Perovskite solar cells | |
650 | 4 | |a Carbon electrodes | |
650 | 4 | |a Hole conductor-free | |
650 | 4 | |a Hole transfer | |
650 | 4 | |a NiO nanoparticles | |
700 | 1 | |a Liu, Wei |e verfasserin |4 aut | |
700 | 1 | |a Qin, Zhengfei |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Rui |e verfasserin |4 aut | |
700 | 1 | |a Hu, Ruiyuan |e verfasserin |4 aut | |
700 | 1 | |a Yang, Jian |e verfasserin |4 aut | |
700 | 1 | |a Yang, Jianping |e verfasserin |4 aut | |
700 | 1 | |a Li, Xing'ao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Solar energy materials & solar cells |d Amsterdam [u.a.] : NH, Elsevier, 1992 |g 178, Seite 164-169 |h Online-Ressource |w (DE-627)320504654 |w (DE-600)2012677-3 |w (DE-576)098474170 |7 nnns |
773 | 1 | 8 | |g volume:178 |g pages:164-169 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 53.36 |j Energiedirektumwandler |j elektrische Energiespeicher |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
936 | b | k | |a 50.70 |j Energie: Allgemeines |
951 | |a AR | ||
952 | |d 178 |h 164-169 |
author_variant |
l c lc w l wl z q zq r z rz r h rh j y jy j y jy x l xl |
---|---|
matchkey_str |
chuliangliuweiqinzhengfeizhangruihuruiyu:2018----:osigfiinyfoeodcofeprvktslrelbicroaigtpnoao |
hierarchy_sort_str |
2018 |
bklnumber |
53.36 52.52 52.56 50.70 |
publishDate |
2018 |
allfields |
10.1016/j.solmat.2018.01.010 doi (DE-627)ELV001897470 (ELSEVIER)S0927-0248(18)30009-6 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl Chu, Liang verfasserin aut Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. Perovskite solar cells Carbon electrodes Hole conductor-free Hole transfer NiO nanoparticles Liu, Wei verfasserin aut Qin, Zhengfei verfasserin aut Zhang, Rui verfasserin aut Hu, Ruiyuan verfasserin aut Yang, Jian verfasserin aut Yang, Jianping verfasserin aut Li, Xing'ao verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 178, Seite 164-169 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:178 pages:164-169 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 178 164-169 |
spelling |
10.1016/j.solmat.2018.01.010 doi (DE-627)ELV001897470 (ELSEVIER)S0927-0248(18)30009-6 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl Chu, Liang verfasserin aut Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. Perovskite solar cells Carbon electrodes Hole conductor-free Hole transfer NiO nanoparticles Liu, Wei verfasserin aut Qin, Zhengfei verfasserin aut Zhang, Rui verfasserin aut Hu, Ruiyuan verfasserin aut Yang, Jian verfasserin aut Yang, Jianping verfasserin aut Li, Xing'ao verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 178, Seite 164-169 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:178 pages:164-169 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 178 164-169 |
allfields_unstemmed |
10.1016/j.solmat.2018.01.010 doi (DE-627)ELV001897470 (ELSEVIER)S0927-0248(18)30009-6 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl Chu, Liang verfasserin aut Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. Perovskite solar cells Carbon electrodes Hole conductor-free Hole transfer NiO nanoparticles Liu, Wei verfasserin aut Qin, Zhengfei verfasserin aut Zhang, Rui verfasserin aut Hu, Ruiyuan verfasserin aut Yang, Jian verfasserin aut Yang, Jianping verfasserin aut Li, Xing'ao verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 178, Seite 164-169 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:178 pages:164-169 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 178 164-169 |
allfieldsGer |
10.1016/j.solmat.2018.01.010 doi (DE-627)ELV001897470 (ELSEVIER)S0927-0248(18)30009-6 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl Chu, Liang verfasserin aut Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. Perovskite solar cells Carbon electrodes Hole conductor-free Hole transfer NiO nanoparticles Liu, Wei verfasserin aut Qin, Zhengfei verfasserin aut Zhang, Rui verfasserin aut Hu, Ruiyuan verfasserin aut Yang, Jian verfasserin aut Yang, Jianping verfasserin aut Li, Xing'ao verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 178, Seite 164-169 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:178 pages:164-169 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 178 164-169 |
allfieldsSound |
10.1016/j.solmat.2018.01.010 doi (DE-627)ELV001897470 (ELSEVIER)S0927-0248(18)30009-6 DE-627 ger DE-627 rda eng 530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl Chu, Liang verfasserin aut Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. Perovskite solar cells Carbon electrodes Hole conductor-free Hole transfer NiO nanoparticles Liu, Wei verfasserin aut Qin, Zhengfei verfasserin aut Zhang, Rui verfasserin aut Hu, Ruiyuan verfasserin aut Yang, Jian verfasserin aut Yang, Jianping verfasserin aut Li, Xing'ao verfasserin aut Enthalten in Solar energy materials & solar cells Amsterdam [u.a.] : NH, Elsevier, 1992 178, Seite 164-169 Online-Ressource (DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 nnns volume:178 pages:164-169 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.36 Energiedirektumwandler elektrische Energiespeicher 52.52 Thermische Energieerzeugung Wärmetechnik 52.56 Regenerative Energieformen alternative Energieformen 50.70 Energie: Allgemeines AR 178 164-169 |
language |
English |
source |
Enthalten in Solar energy materials & solar cells 178, Seite 164-169 volume:178 pages:164-169 |
sourceStr |
Enthalten in Solar energy materials & solar cells 178, Seite 164-169 volume:178 pages:164-169 |
format_phy_str_mv |
Article |
bklname |
Energiedirektumwandler elektrische Energiespeicher Thermische Energieerzeugung Wärmetechnik Regenerative Energieformen alternative Energieformen Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Perovskite solar cells Carbon electrodes Hole conductor-free Hole transfer NiO nanoparticles |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solar energy materials & solar cells |
authorswithroles_txt_mv |
Chu, Liang @@aut@@ Liu, Wei @@aut@@ Qin, Zhengfei @@aut@@ Zhang, Rui @@aut@@ Hu, Ruiyuan @@aut@@ Yang, Jian @@aut@@ Yang, Jianping @@aut@@ Li, Xing'ao @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320504654 |
dewey-sort |
3530 |
id |
ELV001897470 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001897470</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152032.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solmat.2018.01.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001897470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-0248(18)30009-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chu, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite solar cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole conductor-free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NiO nanoparticles</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Zhengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Ruiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jianping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xing'ao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy materials & solar cells</subfield><subfield code="d">Amsterdam [u.a.] : NH, Elsevier, 1992</subfield><subfield code="g">178, Seite 164-169</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504654</subfield><subfield code="w">(DE-600)2012677-3</subfield><subfield code="w">(DE-576)098474170</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:178</subfield><subfield code="g">pages:164-169</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">178</subfield><subfield code="h">164-169</subfield></datafield></record></collection>
|
author |
Chu, Liang |
spellingShingle |
Chu, Liang ddc 530 bkl 53.36 bkl 52.52 bkl 52.56 bkl 50.70 misc Perovskite solar cells misc Carbon electrodes misc Hole conductor-free misc Hole transfer misc NiO nanoparticles Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes |
authorStr |
Chu, Liang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504654 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes Perovskite solar cells Carbon electrodes Hole conductor-free Hole transfer NiO nanoparticles |
topic |
ddc 530 bkl 53.36 bkl 52.52 bkl 52.56 bkl 50.70 misc Perovskite solar cells misc Carbon electrodes misc Hole conductor-free misc Hole transfer misc NiO nanoparticles |
topic_unstemmed |
ddc 530 bkl 53.36 bkl 52.52 bkl 52.56 bkl 50.70 misc Perovskite solar cells misc Carbon electrodes misc Hole conductor-free misc Hole transfer misc NiO nanoparticles |
topic_browse |
ddc 530 bkl 53.36 bkl 52.52 bkl 52.56 bkl 50.70 misc Perovskite solar cells misc Carbon electrodes misc Hole conductor-free misc Hole transfer misc NiO nanoparticles |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solar energy materials & solar cells |
hierarchy_parent_id |
320504654 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Solar energy materials & solar cells |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504654 (DE-600)2012677-3 (DE-576)098474170 |
title |
Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes |
ctrlnum |
(DE-627)ELV001897470 (ELSEVIER)S0927-0248(18)30009-6 |
title_full |
Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes |
author_sort |
Chu, Liang |
journal |
Solar energy materials & solar cells |
journalStr |
Solar energy materials & solar cells |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
164 |
author_browse |
Chu, Liang Liu, Wei Qin, Zhengfei Zhang, Rui Hu, Ruiyuan Yang, Jian Yang, Jianping Li, Xing'ao |
container_volume |
178 |
class |
530 620 DE-600 53.36 bkl 52.52 bkl 52.56 bkl 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chu, Liang |
doi_str_mv |
10.1016/j.solmat.2018.01.010 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type nio nanoparticles into carbon electrodes |
title_auth |
Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes |
abstract |
Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. |
abstractGer |
Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. |
abstract_unstemmed |
Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes |
remote_bool |
true |
author2 |
Liu, Wei Qin, Zhengfei Zhang, Rui Hu, Ruiyuan Yang, Jian Yang, Jianping Li, Xing'ao |
author2Str |
Liu, Wei Qin, Zhengfei Zhang, Rui Hu, Ruiyuan Yang, Jian Yang, Jianping Li, Xing'ao |
ppnlink |
320504654 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.solmat.2018.01.010 |
up_date |
2024-07-06T22:56:18.650Z |
_version_ |
1803872191016599552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001897470</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152032.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solmat.2018.01.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001897470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-0248(18)30009-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chu, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Carbon-based hole conductor-free perovskite solar cells (PSCs) have attracted great attention due to the simple process, low cost and relatively high stability. However, the power conversion efficiency (PCE) is considerably lower than that of the standard PSCs using spiroOMeTAD as hole-conductor material and Au (or Ag) as counter electrodes. Herein, by means of incorporating p-type NiO nanoparticles into carbon electrodes, the PCE of the hole conductor-free PSCs was significantly boosted to 13.26% from 10.29% of that based on pure carbon electrode, because of the enhancement of hole transfer. In addition, the carbon-based hole conductor-free PSCs showed 85% of the initial efficiency after 800h in ambient atmosphere. The results indicate that the p-type NiO nanoparticles can enhance hole transfer from perovskite into carbon electrodes, and the carbon electrodes can prevent the water in the air to improve stability. While the PSCs using Spiro-OMeTAD as hole conductor and Ag as electrodes have slightly lower PCE of 13.24% and lower stability. Hence, it is an effective strategy of incorporating p-type nanomaterials into carbon electrodes to enhance the carbon-based hole conductor-free PSCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite solar cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole conductor-free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NiO nanoparticles</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Zhengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Ruiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jianping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xing'ao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy materials & solar cells</subfield><subfield code="d">Amsterdam [u.a.] : NH, Elsevier, 1992</subfield><subfield code="g">178, Seite 164-169</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504654</subfield><subfield code="w">(DE-600)2012677-3</subfield><subfield code="w">(DE-576)098474170</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:178</subfield><subfield code="g">pages:164-169</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">178</subfield><subfield code="h">164-169</subfield></datafield></record></collection>
|
score |
7.4000044 |