Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations
A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture appro...
Ausführliche Beschreibung
Autor*in: |
Sulis, Mauro [verfasserIn] Couvreur, Valentin [verfasserIn] Keune, Jessica [verfasserIn] Cai, Gaochao [verfasserIn] Trebs, Ivonne [verfasserIn] Junk, Juergen [verfasserIn] Shrestha, Prabhakar [verfasserIn] Simmer, Clemens [verfasserIn] Kollet, Stefan J. [verfasserIn] Vereecken, Harry [verfasserIn] Vanderborght, Jan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Agricultural and forest meteorology - Amsterdam [u.a.] : Elsevier, 1984, 269, Seite 28-45 |
---|---|
Übergeordnetes Werk: |
volume:269 ; pages:28-45 |
DOI / URN: |
10.1016/j.agrformet.2019.01.034 |
---|
Katalog-ID: |
ELV001911554 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001911554 | ||
003 | DE-627 | ||
005 | 20230524155617.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230428s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.agrformet.2019.01.034 |2 doi | |
035 | |a (DE-627)ELV001911554 | ||
035 | |a (ELSEVIER)S0168-1923(19)30043-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 550 |q DE-600 |
084 | |a 38.84 |2 bkl | ||
084 | |a 48.99 |2 bkl | ||
100 | 1 | |a Sulis, Mauro |e verfasserin |0 (orcid)0000-0002-3149-4096 |4 aut | |
245 | 1 | 0 | |a Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. | ||
650 | 4 | |a Root water uptake | |
650 | 4 | |a Hydraulic architecture model | |
650 | 4 | |a Hydraulic redistribution | |
650 | 4 | |a Transpiration | |
650 | 4 | |a Crop water stress | |
650 | 4 | |a Stomata conductance | |
650 | 4 | |a Minirhizotron facility | |
650 | 4 | |a Terrestrial systems modeling | |
700 | 1 | |a Couvreur, Valentin |e verfasserin |4 aut | |
700 | 1 | |a Keune, Jessica |e verfasserin |4 aut | |
700 | 1 | |a Cai, Gaochao |e verfasserin |4 aut | |
700 | 1 | |a Trebs, Ivonne |e verfasserin |4 aut | |
700 | 1 | |a Junk, Juergen |e verfasserin |4 aut | |
700 | 1 | |a Shrestha, Prabhakar |e verfasserin |4 aut | |
700 | 1 | |a Simmer, Clemens |e verfasserin |0 (orcid)0000-0003-3001-8642 |4 aut | |
700 | 1 | |a Kollet, Stefan J. |e verfasserin |4 aut | |
700 | 1 | |a Vereecken, Harry |e verfasserin |4 aut | |
700 | 1 | |a Vanderborght, Jan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Agricultural and forest meteorology |d Amsterdam [u.a.] : Elsevier, 1984 |g 269, Seite 28-45 |h Online-Ressource |w (DE-627)320500608 |w (DE-600)2012165-9 |w (DE-576)094504067 |x 1873-2240 |7 nnns |
773 | 1 | 8 | |g volume:269 |g pages:28-45 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.84 |j Meteorologie: Sonstiges |
936 | b | k | |a 48.99 |j Land- und Forstwirtschaft: Sonstiges |
951 | |a AR | ||
952 | |d 269 |h 28-45 |
author_variant |
m s ms v c vc j k jk g c gc i t it j j jj p s ps c s cs s j k sj sjk h v hv j v jv |
---|---|
matchkey_str |
article:18732240:2019----::noprtnaotaeutkmdlaeoteyruiacietrapocitr |
hierarchy_sort_str |
2019 |
bklnumber |
38.84 48.99 |
publishDate |
2019 |
allfields |
10.1016/j.agrformet.2019.01.034 doi (DE-627)ELV001911554 (ELSEVIER)S0168-1923(19)30043-7 DE-627 ger DE-627 rda eng 630 640 550 DE-600 38.84 bkl 48.99 bkl Sulis, Mauro verfasserin (orcid)0000-0002-3149-4096 aut Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. Root water uptake Hydraulic architecture model Hydraulic redistribution Transpiration Crop water stress Stomata conductance Minirhizotron facility Terrestrial systems modeling Couvreur, Valentin verfasserin aut Keune, Jessica verfasserin aut Cai, Gaochao verfasserin aut Trebs, Ivonne verfasserin aut Junk, Juergen verfasserin aut Shrestha, Prabhakar verfasserin aut Simmer, Clemens verfasserin (orcid)0000-0003-3001-8642 aut Kollet, Stefan J. verfasserin aut Vereecken, Harry verfasserin aut Vanderborght, Jan verfasserin aut Enthalten in Agricultural and forest meteorology Amsterdam [u.a.] : Elsevier, 1984 269, Seite 28-45 Online-Ressource (DE-627)320500608 (DE-600)2012165-9 (DE-576)094504067 1873-2240 nnns volume:269 pages:28-45 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.84 Meteorologie: Sonstiges 48.99 Land- und Forstwirtschaft: Sonstiges AR 269 28-45 |
spelling |
10.1016/j.agrformet.2019.01.034 doi (DE-627)ELV001911554 (ELSEVIER)S0168-1923(19)30043-7 DE-627 ger DE-627 rda eng 630 640 550 DE-600 38.84 bkl 48.99 bkl Sulis, Mauro verfasserin (orcid)0000-0002-3149-4096 aut Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. Root water uptake Hydraulic architecture model Hydraulic redistribution Transpiration Crop water stress Stomata conductance Minirhizotron facility Terrestrial systems modeling Couvreur, Valentin verfasserin aut Keune, Jessica verfasserin aut Cai, Gaochao verfasserin aut Trebs, Ivonne verfasserin aut Junk, Juergen verfasserin aut Shrestha, Prabhakar verfasserin aut Simmer, Clemens verfasserin (orcid)0000-0003-3001-8642 aut Kollet, Stefan J. verfasserin aut Vereecken, Harry verfasserin aut Vanderborght, Jan verfasserin aut Enthalten in Agricultural and forest meteorology Amsterdam [u.a.] : Elsevier, 1984 269, Seite 28-45 Online-Ressource (DE-627)320500608 (DE-600)2012165-9 (DE-576)094504067 1873-2240 nnns volume:269 pages:28-45 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.84 Meteorologie: Sonstiges 48.99 Land- und Forstwirtschaft: Sonstiges AR 269 28-45 |
allfields_unstemmed |
10.1016/j.agrformet.2019.01.034 doi (DE-627)ELV001911554 (ELSEVIER)S0168-1923(19)30043-7 DE-627 ger DE-627 rda eng 630 640 550 DE-600 38.84 bkl 48.99 bkl Sulis, Mauro verfasserin (orcid)0000-0002-3149-4096 aut Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. Root water uptake Hydraulic architecture model Hydraulic redistribution Transpiration Crop water stress Stomata conductance Minirhizotron facility Terrestrial systems modeling Couvreur, Valentin verfasserin aut Keune, Jessica verfasserin aut Cai, Gaochao verfasserin aut Trebs, Ivonne verfasserin aut Junk, Juergen verfasserin aut Shrestha, Prabhakar verfasserin aut Simmer, Clemens verfasserin (orcid)0000-0003-3001-8642 aut Kollet, Stefan J. verfasserin aut Vereecken, Harry verfasserin aut Vanderborght, Jan verfasserin aut Enthalten in Agricultural and forest meteorology Amsterdam [u.a.] : Elsevier, 1984 269, Seite 28-45 Online-Ressource (DE-627)320500608 (DE-600)2012165-9 (DE-576)094504067 1873-2240 nnns volume:269 pages:28-45 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.84 Meteorologie: Sonstiges 48.99 Land- und Forstwirtschaft: Sonstiges AR 269 28-45 |
allfieldsGer |
10.1016/j.agrformet.2019.01.034 doi (DE-627)ELV001911554 (ELSEVIER)S0168-1923(19)30043-7 DE-627 ger DE-627 rda eng 630 640 550 DE-600 38.84 bkl 48.99 bkl Sulis, Mauro verfasserin (orcid)0000-0002-3149-4096 aut Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. Root water uptake Hydraulic architecture model Hydraulic redistribution Transpiration Crop water stress Stomata conductance Minirhizotron facility Terrestrial systems modeling Couvreur, Valentin verfasserin aut Keune, Jessica verfasserin aut Cai, Gaochao verfasserin aut Trebs, Ivonne verfasserin aut Junk, Juergen verfasserin aut Shrestha, Prabhakar verfasserin aut Simmer, Clemens verfasserin (orcid)0000-0003-3001-8642 aut Kollet, Stefan J. verfasserin aut Vereecken, Harry verfasserin aut Vanderborght, Jan verfasserin aut Enthalten in Agricultural and forest meteorology Amsterdam [u.a.] : Elsevier, 1984 269, Seite 28-45 Online-Ressource (DE-627)320500608 (DE-600)2012165-9 (DE-576)094504067 1873-2240 nnns volume:269 pages:28-45 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.84 Meteorologie: Sonstiges 48.99 Land- und Forstwirtschaft: Sonstiges AR 269 28-45 |
allfieldsSound |
10.1016/j.agrformet.2019.01.034 doi (DE-627)ELV001911554 (ELSEVIER)S0168-1923(19)30043-7 DE-627 ger DE-627 rda eng 630 640 550 DE-600 38.84 bkl 48.99 bkl Sulis, Mauro verfasserin (orcid)0000-0002-3149-4096 aut Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. Root water uptake Hydraulic architecture model Hydraulic redistribution Transpiration Crop water stress Stomata conductance Minirhizotron facility Terrestrial systems modeling Couvreur, Valentin verfasserin aut Keune, Jessica verfasserin aut Cai, Gaochao verfasserin aut Trebs, Ivonne verfasserin aut Junk, Juergen verfasserin aut Shrestha, Prabhakar verfasserin aut Simmer, Clemens verfasserin (orcid)0000-0003-3001-8642 aut Kollet, Stefan J. verfasserin aut Vereecken, Harry verfasserin aut Vanderborght, Jan verfasserin aut Enthalten in Agricultural and forest meteorology Amsterdam [u.a.] : Elsevier, 1984 269, Seite 28-45 Online-Ressource (DE-627)320500608 (DE-600)2012165-9 (DE-576)094504067 1873-2240 nnns volume:269 pages:28-45 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.84 Meteorologie: Sonstiges 48.99 Land- und Forstwirtschaft: Sonstiges AR 269 28-45 |
language |
English |
source |
Enthalten in Agricultural and forest meteorology 269, Seite 28-45 volume:269 pages:28-45 |
sourceStr |
Enthalten in Agricultural and forest meteorology 269, Seite 28-45 volume:269 pages:28-45 |
format_phy_str_mv |
Article |
bklname |
Meteorologie: Sonstiges Land- und Forstwirtschaft: Sonstiges |
institution |
findex.gbv.de |
topic_facet |
Root water uptake Hydraulic architecture model Hydraulic redistribution Transpiration Crop water stress Stomata conductance Minirhizotron facility Terrestrial systems modeling |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Agricultural and forest meteorology |
authorswithroles_txt_mv |
Sulis, Mauro @@aut@@ Couvreur, Valentin @@aut@@ Keune, Jessica @@aut@@ Cai, Gaochao @@aut@@ Trebs, Ivonne @@aut@@ Junk, Juergen @@aut@@ Shrestha, Prabhakar @@aut@@ Simmer, Clemens @@aut@@ Kollet, Stefan J. @@aut@@ Vereecken, Harry @@aut@@ Vanderborght, Jan @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320500608 |
dewey-sort |
3630 |
id |
ELV001911554 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001911554</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155617.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.agrformet.2019.01.034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001911554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1923(19)30043-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.84</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.99</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sulis, Mauro</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3149-4096</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Root water uptake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic architecture model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic redistribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transpiration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crop water stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stomata conductance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minirhizotron facility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terrestrial systems modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Couvreur, Valentin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keune, Jessica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Gaochao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trebs, Ivonne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Junk, Juergen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shrestha, Prabhakar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simmer, Clemens</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3001-8642</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kollet, Stefan J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vereecken, Harry</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanderborght, Jan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Agricultural and forest meteorology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1984</subfield><subfield code="g">269, Seite 28-45</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500608</subfield><subfield code="w">(DE-600)2012165-9</subfield><subfield code="w">(DE-576)094504067</subfield><subfield code="x">1873-2240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:269</subfield><subfield code="g">pages:28-45</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.84</subfield><subfield code="j">Meteorologie: Sonstiges</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.99</subfield><subfield code="j">Land- und Forstwirtschaft: Sonstiges</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">269</subfield><subfield code="h">28-45</subfield></datafield></record></collection>
|
author |
Sulis, Mauro |
spellingShingle |
Sulis, Mauro ddc 630 bkl 38.84 bkl 48.99 misc Root water uptake misc Hydraulic architecture model misc Hydraulic redistribution misc Transpiration misc Crop water stress misc Stomata conductance misc Minirhizotron facility misc Terrestrial systems modeling Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations |
authorStr |
Sulis, Mauro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500608 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2240 |
topic_title |
630 640 550 DE-600 38.84 bkl 48.99 bkl Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations Root water uptake Hydraulic architecture model Hydraulic redistribution Transpiration Crop water stress Stomata conductance Minirhizotron facility Terrestrial systems modeling |
topic |
ddc 630 bkl 38.84 bkl 48.99 misc Root water uptake misc Hydraulic architecture model misc Hydraulic redistribution misc Transpiration misc Crop water stress misc Stomata conductance misc Minirhizotron facility misc Terrestrial systems modeling |
topic_unstemmed |
ddc 630 bkl 38.84 bkl 48.99 misc Root water uptake misc Hydraulic architecture model misc Hydraulic redistribution misc Transpiration misc Crop water stress misc Stomata conductance misc Minirhizotron facility misc Terrestrial systems modeling |
topic_browse |
ddc 630 bkl 38.84 bkl 48.99 misc Root water uptake misc Hydraulic architecture model misc Hydraulic redistribution misc Transpiration misc Crop water stress misc Stomata conductance misc Minirhizotron facility misc Terrestrial systems modeling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agricultural and forest meteorology |
hierarchy_parent_id |
320500608 |
dewey-tens |
630 - Agriculture 640 - Home & family management 550 - Earth sciences & geology |
hierarchy_top_title |
Agricultural and forest meteorology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500608 (DE-600)2012165-9 (DE-576)094504067 |
title |
Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations |
ctrlnum |
(DE-627)ELV001911554 (ELSEVIER)S0168-1923(19)30043-7 |
title_full |
Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations |
author_sort |
Sulis, Mauro |
journal |
Agricultural and forest meteorology |
journalStr |
Agricultural and forest meteorology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
28 |
author_browse |
Sulis, Mauro Couvreur, Valentin Keune, Jessica Cai, Gaochao Trebs, Ivonne Junk, Juergen Shrestha, Prabhakar Simmer, Clemens Kollet, Stefan J. Vereecken, Harry Vanderborght, Jan |
container_volume |
269 |
class |
630 640 550 DE-600 38.84 bkl 48.99 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sulis, Mauro |
doi_str_mv |
10.1016/j.agrformet.2019.01.034 |
normlink |
(ORCID)0000-0002-3149-4096 (ORCID)0000-0003-3001-8642 |
normlink_prefix_str_mv |
(orcid)0000-0002-3149-4096 (orcid)0000-0003-3001-8642 |
dewey-full |
630 640 550 |
author2-role |
verfasserin |
title_sort |
incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations |
title_auth |
Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations |
abstract |
A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. |
abstractGer |
A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. |
abstract_unstemmed |
A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations |
remote_bool |
true |
author2 |
Couvreur, Valentin Keune, Jessica Cai, Gaochao Trebs, Ivonne Junk, Juergen Shrestha, Prabhakar Simmer, Clemens Kollet, Stefan J. Vereecken, Harry Vanderborght, Jan |
author2Str |
Couvreur, Valentin Keune, Jessica Cai, Gaochao Trebs, Ivonne Junk, Juergen Shrestha, Prabhakar Simmer, Clemens Kollet, Stefan J. Vereecken, Harry Vanderborght, Jan |
ppnlink |
320500608 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.agrformet.2019.01.034 |
up_date |
2024-07-06T22:59:11.967Z |
_version_ |
1803872372753694720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001911554</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155617.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230428s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.agrformet.2019.01.034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001911554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1923(19)30043-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.84</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.99</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sulis, Mauro</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3149-4096</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A detailed representation of plant hydraulic traits and stomatal closure in land surface models (LSMs) is a prerequisite for improved predictions of ecosystem drought response. This work presents the integration of a macroscopic root water uptake (RWU) model based on the hydraulic architecture approach in the LSM of the Terrestrial Systems Modeling Platform. The novel RWU approach is based on three parameters derived from first principles that describe the root system equivalent conductance, the compensatory RWU conductance, and the leaf water potential at stomatal closure, which defines the water stress condition for the plants. The developed RWU model intrinsically accounts for changes in the root density as well as for the simulation of the hydraulic lift process. The standard and the new RWU approach are compared by performing point-scale simulations for cropland over a sheltered minirhizotron facility in Selhausen, Germany, and validated against transpiration fluxes estimated from sap flow and soil water content measurements at different depths. Numerical sensitivity experiments are carried out using different soil textures and root distributions in order to evaluate the interplay between soil hydrodynamics and plant characteristics, and the impact of assuming time-constant plant physiological properties. Results show a good agreement between simulated and observed transpiration fluxes for both RWU models, with a more distinct response under water stress conditions and with uncertainty in the soil parameterization prevailing to the differences due to changes in the model formulation. The hydraulic RWU model exhibits also a lower sensitivity to the root distributions when simulating the onset of the water stress period. Finally, an analysis of variability across the soil and root scenarios indicates that differences in soil water content are mainly influenced by the root distribution, while the transpiration flux in both RWU models is additionally determined by the soil characteristics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Root water uptake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic architecture model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic redistribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transpiration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crop water stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stomata conductance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minirhizotron facility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terrestrial systems modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Couvreur, Valentin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keune, Jessica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Gaochao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trebs, Ivonne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Junk, Juergen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shrestha, Prabhakar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simmer, Clemens</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3001-8642</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kollet, Stefan J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vereecken, Harry</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanderborght, Jan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Agricultural and forest meteorology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1984</subfield><subfield code="g">269, Seite 28-45</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500608</subfield><subfield code="w">(DE-600)2012165-9</subfield><subfield code="w">(DE-576)094504067</subfield><subfield code="x">1873-2240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:269</subfield><subfield code="g">pages:28-45</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.84</subfield><subfield code="j">Meteorologie: Sonstiges</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.99</subfield><subfield code="j">Land- und Forstwirtschaft: Sonstiges</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">269</subfield><subfield code="h">28-45</subfield></datafield></record></collection>
|
score |
7.400522 |