Performance of nanolubricants containing MoS
The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining a...
Ausführliche Beschreibung
Autor*in: |
Rodríguez Ripoll, Manel [verfasserIn] Tomala, Agnieszka Maria [verfasserIn] Totolin, Vladimir [verfasserIn] Remškar, Maja [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of manufacturing processes - Dearborn, Mich. : Soc., 1999, 39, Seite 167-180 |
---|---|
Übergeordnetes Werk: |
volume:39 ; pages:167-180 |
DOI / URN: |
10.1016/j.jmapro.2019.02.012 |
---|
Katalog-ID: |
ELV001961225 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001961225 | ||
003 | DE-627 | ||
005 | 20230524121618.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmapro.2019.02.012 |2 doi | |
035 | |a (DE-627)ELV001961225 | ||
035 | |a (ELSEVIER)S1526-6125(18)30973-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 650 |a 620 |a 004 |q DE-600 |
100 | 1 | |a Rodríguez Ripoll, Manel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance of nanolubricants containing MoS |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. | ||
650 | 4 | |a MoS | |
650 | 4 | |a Form tapping | |
650 | 4 | |a Nanofluid | |
650 | 4 | |a Thread | |
650 | 4 | |a Zinc-coated steel | |
650 | 4 | |a Tribology | |
700 | 1 | |a Tomala, Agnieszka Maria |e verfasserin |4 aut | |
700 | 1 | |a Totolin, Vladimir |e verfasserin |4 aut | |
700 | 1 | |a Remškar, Maja |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of manufacturing processes |d Dearborn, Mich. : Soc., 1999 |g 39, Seite 167-180 |h Online-Ressource |w (DE-627)472650998 |w (DE-600)2168529-0 |w (DE-576)302969888 |7 nnns |
773 | 1 | 8 | |g volume:39 |g pages:167-180 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 39 |h 167-180 |
author_variant |
r m r rm rmr a m t am amt v t vt m r mr |
---|---|
matchkey_str |
rodrguezripollmaneltomalaagnieszkamariat:2019----:efraconnlbiatcn |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1016/j.jmapro.2019.02.012 doi (DE-627)ELV001961225 (ELSEVIER)S1526-6125(18)30973-3 DE-627 ger DE-627 rda eng 650 620 004 DE-600 Rodríguez Ripoll, Manel verfasserin aut Performance of nanolubricants containing MoS 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. MoS Form tapping Nanofluid Thread Zinc-coated steel Tribology Tomala, Agnieszka Maria verfasserin aut Totolin, Vladimir verfasserin aut Remškar, Maja verfasserin aut Enthalten in Journal of manufacturing processes Dearborn, Mich. : Soc., 1999 39, Seite 167-180 Online-Ressource (DE-627)472650998 (DE-600)2168529-0 (DE-576)302969888 nnns volume:39 pages:167-180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 39 167-180 |
spelling |
10.1016/j.jmapro.2019.02.012 doi (DE-627)ELV001961225 (ELSEVIER)S1526-6125(18)30973-3 DE-627 ger DE-627 rda eng 650 620 004 DE-600 Rodríguez Ripoll, Manel verfasserin aut Performance of nanolubricants containing MoS 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. MoS Form tapping Nanofluid Thread Zinc-coated steel Tribology Tomala, Agnieszka Maria verfasserin aut Totolin, Vladimir verfasserin aut Remškar, Maja verfasserin aut Enthalten in Journal of manufacturing processes Dearborn, Mich. : Soc., 1999 39, Seite 167-180 Online-Ressource (DE-627)472650998 (DE-600)2168529-0 (DE-576)302969888 nnns volume:39 pages:167-180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 39 167-180 |
allfields_unstemmed |
10.1016/j.jmapro.2019.02.012 doi (DE-627)ELV001961225 (ELSEVIER)S1526-6125(18)30973-3 DE-627 ger DE-627 rda eng 650 620 004 DE-600 Rodríguez Ripoll, Manel verfasserin aut Performance of nanolubricants containing MoS 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. MoS Form tapping Nanofluid Thread Zinc-coated steel Tribology Tomala, Agnieszka Maria verfasserin aut Totolin, Vladimir verfasserin aut Remškar, Maja verfasserin aut Enthalten in Journal of manufacturing processes Dearborn, Mich. : Soc., 1999 39, Seite 167-180 Online-Ressource (DE-627)472650998 (DE-600)2168529-0 (DE-576)302969888 nnns volume:39 pages:167-180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 39 167-180 |
allfieldsGer |
10.1016/j.jmapro.2019.02.012 doi (DE-627)ELV001961225 (ELSEVIER)S1526-6125(18)30973-3 DE-627 ger DE-627 rda eng 650 620 004 DE-600 Rodríguez Ripoll, Manel verfasserin aut Performance of nanolubricants containing MoS 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. MoS Form tapping Nanofluid Thread Zinc-coated steel Tribology Tomala, Agnieszka Maria verfasserin aut Totolin, Vladimir verfasserin aut Remškar, Maja verfasserin aut Enthalten in Journal of manufacturing processes Dearborn, Mich. : Soc., 1999 39, Seite 167-180 Online-Ressource (DE-627)472650998 (DE-600)2168529-0 (DE-576)302969888 nnns volume:39 pages:167-180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 39 167-180 |
allfieldsSound |
10.1016/j.jmapro.2019.02.012 doi (DE-627)ELV001961225 (ELSEVIER)S1526-6125(18)30973-3 DE-627 ger DE-627 rda eng 650 620 004 DE-600 Rodríguez Ripoll, Manel verfasserin aut Performance of nanolubricants containing MoS 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. MoS Form tapping Nanofluid Thread Zinc-coated steel Tribology Tomala, Agnieszka Maria verfasserin aut Totolin, Vladimir verfasserin aut Remškar, Maja verfasserin aut Enthalten in Journal of manufacturing processes Dearborn, Mich. : Soc., 1999 39, Seite 167-180 Online-Ressource (DE-627)472650998 (DE-600)2168529-0 (DE-576)302969888 nnns volume:39 pages:167-180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 39 167-180 |
language |
English |
source |
Enthalten in Journal of manufacturing processes 39, Seite 167-180 volume:39 pages:167-180 |
sourceStr |
Enthalten in Journal of manufacturing processes 39, Seite 167-180 volume:39 pages:167-180 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MoS Form tapping Nanofluid Thread Zinc-coated steel Tribology |
dewey-raw |
650 |
isfreeaccess_bool |
false |
container_title |
Journal of manufacturing processes |
authorswithroles_txt_mv |
Rodríguez Ripoll, Manel @@aut@@ Tomala, Agnieszka Maria @@aut@@ Totolin, Vladimir @@aut@@ Remškar, Maja @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
472650998 |
dewey-sort |
3650 |
id |
ELV001961225 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001961225</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524121618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmapro.2019.02.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001961225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1526-6125(18)30973-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rodríguez Ripoll, Manel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance of nanolubricants containing MoS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Form tapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thread</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zinc-coated steel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tribology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomala, Agnieszka Maria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Totolin, Vladimir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remškar, Maja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of manufacturing processes</subfield><subfield code="d">Dearborn, Mich. : Soc., 1999</subfield><subfield code="g">39, Seite 167-180</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)472650998</subfield><subfield code="w">(DE-600)2168529-0</subfield><subfield code="w">(DE-576)302969888</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">pages:167-180</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="h">167-180</subfield></datafield></record></collection>
|
author |
Rodríguez Ripoll, Manel |
spellingShingle |
Rodríguez Ripoll, Manel ddc 650 misc MoS misc Form tapping misc Nanofluid misc Thread misc Zinc-coated steel misc Tribology Performance of nanolubricants containing MoS |
authorStr |
Rodríguez Ripoll, Manel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)472650998 |
format |
electronic Article |
dewey-ones |
650 - Management & auxiliary services 620 - Engineering & allied operations 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
650 620 004 DE-600 Performance of nanolubricants containing MoS MoS Form tapping Nanofluid Thread Zinc-coated steel Tribology |
topic |
ddc 650 misc MoS misc Form tapping misc Nanofluid misc Thread misc Zinc-coated steel misc Tribology |
topic_unstemmed |
ddc 650 misc MoS misc Form tapping misc Nanofluid misc Thread misc Zinc-coated steel misc Tribology |
topic_browse |
ddc 650 misc MoS misc Form tapping misc Nanofluid misc Thread misc Zinc-coated steel misc Tribology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of manufacturing processes |
hierarchy_parent_id |
472650998 |
dewey-tens |
650 - Management & public relations 620 - Engineering 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of manufacturing processes |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)472650998 (DE-600)2168529-0 (DE-576)302969888 |
title |
Performance of nanolubricants containing MoS |
ctrlnum |
(DE-627)ELV001961225 (ELSEVIER)S1526-6125(18)30973-3 |
title_full |
Performance of nanolubricants containing MoS |
author_sort |
Rodríguez Ripoll, Manel |
journal |
Journal of manufacturing processes |
journalStr |
Journal of manufacturing processes |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
167 |
author_browse |
Rodríguez Ripoll, Manel Tomala, Agnieszka Maria Totolin, Vladimir Remškar, Maja |
container_volume |
39 |
class |
650 620 004 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Rodríguez Ripoll, Manel |
doi_str_mv |
10.1016/j.jmapro.2019.02.012 |
dewey-full |
650 620 004 |
author2-role |
verfasserin |
title_sort |
performance of nanolubricants containing mos |
title_auth |
Performance of nanolubricants containing MoS |
abstract |
The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. |
abstractGer |
The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. |
abstract_unstemmed |
The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Performance of nanolubricants containing MoS |
remote_bool |
true |
author2 |
Tomala, Agnieszka Maria Totolin, Vladimir Remškar, Maja |
author2Str |
Tomala, Agnieszka Maria Totolin, Vladimir Remškar, Maja |
ppnlink |
472650998 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmapro.2019.02.012 |
up_date |
2024-07-06T23:09:17.465Z |
_version_ |
1803873007663316992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001961225</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524121618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmapro.2019.02.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001961225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1526-6125(18)30973-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rodríguez Ripoll, Manel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance of nanolubricants containing MoS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents the first use of nanolubricants containing MoS2 nanotubes for form tapping of zinc-coated steel. MoS2 nanotubes are known for their superb low frictional, anti-wear and extreme pressure properties and have shown a promising performance as nanolubricant additive in many machining and forming applications. However their interfacial interaction with zinc-coated components commonly used in automotive applications and their synergisms and antagonisms with currently used additives in forming oils are two crucial aspects that have not been addressed so far. The assessment of these synergies is of uttermost importance for developing future nanofluid minimum quantity lubrication formulations, since despite their extraordinary performance, MoS2 nanotubes are not able to fulfil all the roles expected from a forming oil. To this end, this paper aims to investigate the performance of MoS2-based nanolubricants in combination with representative forming oil additives. The threads are perform using a form tapping unit with customized data acquisition on zinc-coated steel, as a representative part in automotive applications. The performance of the nanolubricants is thoroughly investigated using advanced analytic methods with the aim of revealing the underlying interface interaction mechanisms for the observed torque behaviour and resulting thread morphology and sub-surface hardness. The results show that MoS2 nanotubes are able to interact and form a tribofilm in Zn coated surfaces that leads to a superb friction performance. In combination with oil additives, MoS2 based nanolubricants have a particularly positive synergy with extreme pressure additives in terms of friction reduction, sub-surface hardening and thread morphology. On contrary, the lowest synergy is achieved in the presence of dispersants, leading to higher torques during form tapping and higher sub-surface hardness in the formed threads.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Form tapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thread</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zinc-coated steel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tribology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomala, Agnieszka Maria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Totolin, Vladimir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remškar, Maja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of manufacturing processes</subfield><subfield code="d">Dearborn, Mich. : Soc., 1999</subfield><subfield code="g">39, Seite 167-180</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)472650998</subfield><subfield code="w">(DE-600)2168529-0</subfield><subfield code="w">(DE-576)302969888</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">pages:167-180</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="h">167-180</subfield></datafield></record></collection>
|
score |
7.401041 |