Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate
High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and...
Ausführliche Beschreibung
Autor*in: |
Cai, Yezheng [verfasserIn] Huang, Dequan [verfasserIn] Ma, Zhaoling [verfasserIn] Wang, Hongqiang [verfasserIn] Huang, Youguo [verfasserIn] Wu, Xianwen [verfasserIn] Li, Qingyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Electrochimica acta - New York, NY [u.a.] : Elsevier, 1959, 305, Seite 563-570 |
---|---|
Übergeordnetes Werk: |
volume:305 ; pages:563-570 |
DOI / URN: |
10.1016/j.electacta.2019.02.114 |
---|
Katalog-ID: |
ELV001997343 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV001997343 | ||
003 | DE-627 | ||
005 | 20230524142825.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.electacta.2019.02.114 |2 doi | |
035 | |a (DE-627)ELV001997343 | ||
035 | |a (ELSEVIER)S0013-4686(19)30384-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Cai, Yezheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. | ||
650 | 4 | |a Lithium ion battery | |
650 | 4 | |a Cathode material | |
650 | 4 | |a Conductivity network | |
650 | 4 | |a Carbon nanotubes | |
650 | 4 | |a Graphene | |
700 | 1 | |a Huang, Dequan |e verfasserin |4 aut | |
700 | 1 | |a Ma, Zhaoling |e verfasserin |4 aut | |
700 | 1 | |a Wang, Hongqiang |e verfasserin |4 aut | |
700 | 1 | |a Huang, Youguo |e verfasserin |4 aut | |
700 | 1 | |a Wu, Xianwen |e verfasserin |4 aut | |
700 | 1 | |a Li, Qingyu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Electrochimica acta |d New York, NY [u.a.] : Elsevier, 1959 |g 305, Seite 563-570 |h Online-Ressource |w (DE-627)300897561 |w (DE-600)1483548-4 |w (DE-576)094752451 |x 1873-3859 |7 nnns |
773 | 1 | 8 | |g volume:305 |g pages:563-570 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |
951 | |a AR | ||
952 | |d 305 |h 563-570 |
author_variant |
y c yc d h dh z m zm h w hw y h yh x w xw q l ql |
---|---|
matchkey_str |
article:18733859:2019----::osrcinfihyodcieewrfrmrvneetohmclefra |
hierarchy_sort_str |
2019 |
bklnumber |
35.00 |
publishDate |
2019 |
allfields |
10.1016/j.electacta.2019.02.114 doi (DE-627)ELV001997343 (ELSEVIER)S0013-4686(19)30384-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Cai, Yezheng verfasserin aut Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. Lithium ion battery Cathode material Conductivity network Carbon nanotubes Graphene Huang, Dequan verfasserin aut Ma, Zhaoling verfasserin aut Wang, Hongqiang verfasserin aut Huang, Youguo verfasserin aut Wu, Xianwen verfasserin aut Li, Qingyu verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 305, Seite 563-570 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:305 pages:563-570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 305 563-570 |
spelling |
10.1016/j.electacta.2019.02.114 doi (DE-627)ELV001997343 (ELSEVIER)S0013-4686(19)30384-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Cai, Yezheng verfasserin aut Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. Lithium ion battery Cathode material Conductivity network Carbon nanotubes Graphene Huang, Dequan verfasserin aut Ma, Zhaoling verfasserin aut Wang, Hongqiang verfasserin aut Huang, Youguo verfasserin aut Wu, Xianwen verfasserin aut Li, Qingyu verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 305, Seite 563-570 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:305 pages:563-570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 305 563-570 |
allfields_unstemmed |
10.1016/j.electacta.2019.02.114 doi (DE-627)ELV001997343 (ELSEVIER)S0013-4686(19)30384-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Cai, Yezheng verfasserin aut Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. Lithium ion battery Cathode material Conductivity network Carbon nanotubes Graphene Huang, Dequan verfasserin aut Ma, Zhaoling verfasserin aut Wang, Hongqiang verfasserin aut Huang, Youguo verfasserin aut Wu, Xianwen verfasserin aut Li, Qingyu verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 305, Seite 563-570 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:305 pages:563-570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 305 563-570 |
allfieldsGer |
10.1016/j.electacta.2019.02.114 doi (DE-627)ELV001997343 (ELSEVIER)S0013-4686(19)30384-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Cai, Yezheng verfasserin aut Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. Lithium ion battery Cathode material Conductivity network Carbon nanotubes Graphene Huang, Dequan verfasserin aut Ma, Zhaoling verfasserin aut Wang, Hongqiang verfasserin aut Huang, Youguo verfasserin aut Wu, Xianwen verfasserin aut Li, Qingyu verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 305, Seite 563-570 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:305 pages:563-570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 305 563-570 |
allfieldsSound |
10.1016/j.electacta.2019.02.114 doi (DE-627)ELV001997343 (ELSEVIER)S0013-4686(19)30384-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Cai, Yezheng verfasserin aut Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. Lithium ion battery Cathode material Conductivity network Carbon nanotubes Graphene Huang, Dequan verfasserin aut Ma, Zhaoling verfasserin aut Wang, Hongqiang verfasserin aut Huang, Youguo verfasserin aut Wu, Xianwen verfasserin aut Li, Qingyu verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 305, Seite 563-570 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:305 pages:563-570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 305 563-570 |
language |
English |
source |
Enthalten in Electrochimica acta 305, Seite 563-570 volume:305 pages:563-570 |
sourceStr |
Enthalten in Electrochimica acta 305, Seite 563-570 volume:305 pages:563-570 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Lithium ion battery Cathode material Conductivity network Carbon nanotubes Graphene |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Electrochimica acta |
authorswithroles_txt_mv |
Cai, Yezheng @@aut@@ Huang, Dequan @@aut@@ Ma, Zhaoling @@aut@@ Wang, Hongqiang @@aut@@ Huang, Youguo @@aut@@ Wu, Xianwen @@aut@@ Li, Qingyu @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
300897561 |
dewey-sort |
3540 |
id |
ELV001997343 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001997343</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142825.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.electacta.2019.02.114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001997343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-4686(19)30384-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Yezheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cathode material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conductivity network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Dequan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Zhaoling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Youguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Xianwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qingyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Electrochimica acta</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1959</subfield><subfield code="g">305, Seite 563-570</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300897561</subfield><subfield code="w">(DE-600)1483548-4</subfield><subfield code="w">(DE-576)094752451</subfield><subfield code="x">1873-3859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:305</subfield><subfield code="g">pages:563-570</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">305</subfield><subfield code="h">563-570</subfield></datafield></record></collection>
|
author |
Cai, Yezheng |
spellingShingle |
Cai, Yezheng ddc 540 bkl 35.00 misc Lithium ion battery misc Cathode material misc Conductivity network misc Carbon nanotubes misc Graphene Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate |
authorStr |
Cai, Yezheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300897561 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3859 |
topic_title |
540 DE-600 35.00 bkl Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate Lithium ion battery Cathode material Conductivity network Carbon nanotubes Graphene |
topic |
ddc 540 bkl 35.00 misc Lithium ion battery misc Cathode material misc Conductivity network misc Carbon nanotubes misc Graphene |
topic_unstemmed |
ddc 540 bkl 35.00 misc Lithium ion battery misc Cathode material misc Conductivity network misc Carbon nanotubes misc Graphene |
topic_browse |
ddc 540 bkl 35.00 misc Lithium ion battery misc Cathode material misc Conductivity network misc Carbon nanotubes misc Graphene |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electrochimica acta |
hierarchy_parent_id |
300897561 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Electrochimica acta |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 |
title |
Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate |
ctrlnum |
(DE-627)ELV001997343 (ELSEVIER)S0013-4686(19)30384-6 |
title_full |
Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate |
author_sort |
Cai, Yezheng |
journal |
Electrochimica acta |
journalStr |
Electrochimica acta |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
563 |
author_browse |
Cai, Yezheng Huang, Dequan Ma, Zhaoling Wang, Hongqiang Huang, Youguo Wu, Xianwen Li, Qingyu |
container_volume |
305 |
class |
540 DE-600 35.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cai, Yezheng |
doi_str_mv |
10.1016/j.electacta.2019.02.114 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
construction of highly conductive network for improving electrochemical performance of lithium iron phosphate |
title_auth |
Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate |
abstract |
High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. |
abstractGer |
High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. |
abstract_unstemmed |
High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate |
remote_bool |
true |
author2 |
Huang, Dequan Ma, Zhaoling Wang, Hongqiang Huang, Youguo Wu, Xianwen Li, Qingyu |
author2Str |
Huang, Dequan Ma, Zhaoling Wang, Hongqiang Huang, Youguo Wu, Xianwen Li, Qingyu |
ppnlink |
300897561 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.electacta.2019.02.114 |
up_date |
2024-07-06T23:16:43.991Z |
_version_ |
1803873475878715392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV001997343</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142825.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.electacta.2019.02.114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV001997343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-4686(19)30384-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Yezheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High performance lithium iron phosphate (LFP) cathode materials were synthesized using amorphous carbon, carbon nanotubes (CNTs), and graphene (G) as conductive materials via sand milling and spray drying processes and followed by calcination. The structural characterizations indicated that CNTs and G can well connected with LFP nanoparticles (NPs), which was coated with a thin layer of amorphous carbon, benefiting the construction of three-dimensional efficient conductive network. The electrochemical measurements confirmed that the introduction of CNTs and G can obviously decrease the charge transfer impedance of lithium ion battery and increase the discharge special capacity. The initial discharge special capacity increases in the order of LFP/C (150.3 mAh/g) < LFP/C/CNTs (155.7 mAh/g) < LFP/C/G (159.7 mAh/g) < LFP/C/G/CNTs (164.5 mAh/g) at 0.1 C. LFP/C/G/CNTs also exhibited considerable discharge special capacity (99.5 mAh/g) at high current of 5 C. Compared with LFP/C (248 Ω), LFP/C/G/CNTs (50 Ω) showed obviously decreased charge transfer impedance. Cycle performance test indicated that the specific capacity retention for LFP/C/G/CNTs was 99% after 200 cycles, displaying good cycle stability. The superior electrochemical performance of LFP/C/G/CNTs is attributed to the significantly synergistic effect of CNTs and G on decreasing charge transfer impedance by constructing highly three-dimensional conductive network. Besides, the effect of G to CNTs mass ratio and the calcination temperature on the electrochemical performance of LIBs were also discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cathode material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conductivity network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Dequan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Zhaoling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Youguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Xianwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qingyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Electrochimica acta</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1959</subfield><subfield code="g">305, Seite 563-570</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300897561</subfield><subfield code="w">(DE-600)1483548-4</subfield><subfield code="w">(DE-576)094752451</subfield><subfield code="x">1873-3859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:305</subfield><subfield code="g">pages:563-570</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">305</subfield><subfield code="h">563-570</subfield></datafield></record></collection>
|
score |
7.4006233 |