Vegetation Index Weighted Canopy Volume Model (CVM
Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolutio...
Ausführliche Beschreibung
Autor*in: |
Maimaitijiang, Maitiniyazi [verfasserIn] Sagan, Vasit [verfasserIn] Sidike, Paheding [verfasserIn] Maimaitiyiming, Matthew [verfasserIn] Hartling, Sean [verfasserIn] Peterson, Kyle T. [verfasserIn] Maw, Michael J.W. [verfasserIn] Shakoor, Nadia [verfasserIn] Mockler, Todd [verfasserIn] Fritschi, Felix B. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: ISPRS journal of photogrammetry and remote sensing - International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7, Amsterdam [u.a.] : Elsevier, 1989, 151, Seite 27-41 |
---|---|
Übergeordnetes Werk: |
volume:151 ; pages:27-41 |
DOI / URN: |
10.1016/j.isprsjprs.2019.03.003 |
---|
Katalog-ID: |
ELV002060779 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002060779 | ||
003 | DE-627 | ||
005 | 20230524160925.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.isprsjprs.2019.03.003 |2 doi | |
035 | |a (DE-627)ELV002060779 | ||
035 | |a (ELSEVIER)S0924-2716(19)30064-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 38.73 |2 bkl | ||
084 | |a 74.41 |2 bkl | ||
100 | 1 | |a Maimaitijiang, Maitiniyazi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Vegetation Index Weighted Canopy Volume Model (CVM |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. | ||
650 | 4 | |a Canopy volume model (CVM) | |
650 | 4 | |a Vegetation index weighted canopy volume model (CVM | |
650 | 4 | |a Unmanned Aerial Systems (UAS) | |
650 | 4 | |a Biomass estimation | |
650 | 4 | |a Photogrammetric point clouds | |
700 | 1 | |a Sagan, Vasit |e verfasserin |0 (orcid)0000-0003-4712-9672 |4 aut | |
700 | 1 | |a Sidike, Paheding |e verfasserin |4 aut | |
700 | 1 | |a Maimaitiyiming, Matthew |e verfasserin |4 aut | |
700 | 1 | |a Hartling, Sean |e verfasserin |4 aut | |
700 | 1 | |a Peterson, Kyle T. |e verfasserin |4 aut | |
700 | 1 | |a Maw, Michael J.W. |e verfasserin |4 aut | |
700 | 1 | |a Shakoor, Nadia |e verfasserin |4 aut | |
700 | 1 | |a Mockler, Todd |e verfasserin |4 aut | |
700 | 1 | |a Fritschi, Felix B. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |a International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 |t ISPRS journal of photogrammetry and remote sensing |d Amsterdam [u.a.] : Elsevier, 1989 |g 151, Seite 27-41 |h Online-Ressource |w (DE-627)320504557 |w (DE-600)2012663-3 |w (DE-576)096806567 |x 0924-2716 |7 nnns |
773 | 1 | 8 | |g volume:151 |g pages:27-41 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.73 |j Geodäsie |
936 | b | k | |a 74.41 |j Luftaufnahmen |j Photogrammetrie |
951 | |a AR | ||
952 | |d 151 |h 27-41 |
author_variant |
m m mm v s vs p s ps m m mm s h sh k t p kt ktp m j m mj mjm n s ns t m tm f b f fb fbf |
---|---|
matchkey_str |
article:09242716:2019----::eeainnewihecnpv |
hierarchy_sort_str |
2019 |
bklnumber |
38.73 74.41 |
publishDate |
2019 |
allfields |
10.1016/j.isprsjprs.2019.03.003 doi (DE-627)ELV002060779 (ELSEVIER)S0924-2716(19)30064-4 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Vegetation Index Weighted Canopy Volume Model (CVM 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. Canopy volume model (CVM) Vegetation index weighted canopy volume model (CVM Unmanned Aerial Systems (UAS) Biomass estimation Photogrammetric point clouds Sagan, Vasit verfasserin (orcid)0000-0003-4712-9672 aut Sidike, Paheding verfasserin aut Maimaitiyiming, Matthew verfasserin aut Hartling, Sean verfasserin aut Peterson, Kyle T. verfasserin aut Maw, Michael J.W. verfasserin aut Shakoor, Nadia verfasserin aut Mockler, Todd verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 151, Seite 27-41 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:151 pages:27-41 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 151 27-41 |
spelling |
10.1016/j.isprsjprs.2019.03.003 doi (DE-627)ELV002060779 (ELSEVIER)S0924-2716(19)30064-4 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Vegetation Index Weighted Canopy Volume Model (CVM 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. Canopy volume model (CVM) Vegetation index weighted canopy volume model (CVM Unmanned Aerial Systems (UAS) Biomass estimation Photogrammetric point clouds Sagan, Vasit verfasserin (orcid)0000-0003-4712-9672 aut Sidike, Paheding verfasserin aut Maimaitiyiming, Matthew verfasserin aut Hartling, Sean verfasserin aut Peterson, Kyle T. verfasserin aut Maw, Michael J.W. verfasserin aut Shakoor, Nadia verfasserin aut Mockler, Todd verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 151, Seite 27-41 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:151 pages:27-41 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 151 27-41 |
allfields_unstemmed |
10.1016/j.isprsjprs.2019.03.003 doi (DE-627)ELV002060779 (ELSEVIER)S0924-2716(19)30064-4 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Vegetation Index Weighted Canopy Volume Model (CVM 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. Canopy volume model (CVM) Vegetation index weighted canopy volume model (CVM Unmanned Aerial Systems (UAS) Biomass estimation Photogrammetric point clouds Sagan, Vasit verfasserin (orcid)0000-0003-4712-9672 aut Sidike, Paheding verfasserin aut Maimaitiyiming, Matthew verfasserin aut Hartling, Sean verfasserin aut Peterson, Kyle T. verfasserin aut Maw, Michael J.W. verfasserin aut Shakoor, Nadia verfasserin aut Mockler, Todd verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 151, Seite 27-41 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:151 pages:27-41 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 151 27-41 |
allfieldsGer |
10.1016/j.isprsjprs.2019.03.003 doi (DE-627)ELV002060779 (ELSEVIER)S0924-2716(19)30064-4 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Vegetation Index Weighted Canopy Volume Model (CVM 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. Canopy volume model (CVM) Vegetation index weighted canopy volume model (CVM Unmanned Aerial Systems (UAS) Biomass estimation Photogrammetric point clouds Sagan, Vasit verfasserin (orcid)0000-0003-4712-9672 aut Sidike, Paheding verfasserin aut Maimaitiyiming, Matthew verfasserin aut Hartling, Sean verfasserin aut Peterson, Kyle T. verfasserin aut Maw, Michael J.W. verfasserin aut Shakoor, Nadia verfasserin aut Mockler, Todd verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 151, Seite 27-41 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:151 pages:27-41 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 151 27-41 |
allfieldsSound |
10.1016/j.isprsjprs.2019.03.003 doi (DE-627)ELV002060779 (ELSEVIER)S0924-2716(19)30064-4 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Vegetation Index Weighted Canopy Volume Model (CVM 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. Canopy volume model (CVM) Vegetation index weighted canopy volume model (CVM Unmanned Aerial Systems (UAS) Biomass estimation Photogrammetric point clouds Sagan, Vasit verfasserin (orcid)0000-0003-4712-9672 aut Sidike, Paheding verfasserin aut Maimaitiyiming, Matthew verfasserin aut Hartling, Sean verfasserin aut Peterson, Kyle T. verfasserin aut Maw, Michael J.W. verfasserin aut Shakoor, Nadia verfasserin aut Mockler, Todd verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 151, Seite 27-41 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:151 pages:27-41 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 151 27-41 |
language |
English |
source |
Enthalten in ISPRS journal of photogrammetry and remote sensing 151, Seite 27-41 volume:151 pages:27-41 |
sourceStr |
Enthalten in ISPRS journal of photogrammetry and remote sensing 151, Seite 27-41 volume:151 pages:27-41 |
format_phy_str_mv |
Article |
bklname |
Geodäsie Luftaufnahmen Photogrammetrie |
institution |
findex.gbv.de |
topic_facet |
Canopy volume model (CVM) Vegetation index weighted canopy volume model (CVM Unmanned Aerial Systems (UAS) Biomass estimation Photogrammetric point clouds |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
ISPRS journal of photogrammetry and remote sensing |
authorswithroles_txt_mv |
Maimaitijiang, Maitiniyazi @@aut@@ Sagan, Vasit @@aut@@ Sidike, Paheding @@aut@@ Maimaitiyiming, Matthew @@aut@@ Hartling, Sean @@aut@@ Peterson, Kyle T. @@aut@@ Maw, Michael J.W. @@aut@@ Shakoor, Nadia @@aut@@ Mockler, Todd @@aut@@ Fritschi, Felix B. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320504557 |
dewey-sort |
3550 |
id |
ELV002060779 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002060779</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160925.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isprsjprs.2019.03.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002060779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-2716(19)30064-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maimaitijiang, Maitiniyazi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vegetation Index Weighted Canopy Volume Model (CVM</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canopy volume model (CVM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vegetation index weighted canopy volume model (CVM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unmanned Aerial Systems (UAS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photogrammetric point clouds</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagan, Vasit</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4712-9672</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sidike, Paheding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maimaitiyiming, Matthew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartling, Sean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peterson, Kyle T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maw, Michael J.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shakoor, Nadia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mockler, Todd</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fritschi, Felix B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7</subfield><subfield code="t">ISPRS journal of photogrammetry and remote sensing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1989</subfield><subfield code="g">151, Seite 27-41</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504557</subfield><subfield code="w">(DE-600)2012663-3</subfield><subfield code="w">(DE-576)096806567</subfield><subfield code="x">0924-2716</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">pages:27-41</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.73</subfield><subfield code="j">Geodäsie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="h">27-41</subfield></datafield></record></collection>
|
author |
Maimaitijiang, Maitiniyazi |
spellingShingle |
Maimaitijiang, Maitiniyazi ddc 550 bkl 38.73 bkl 74.41 misc Canopy volume model (CVM) misc Vegetation index weighted canopy volume model (CVM misc Unmanned Aerial Systems (UAS) misc Biomass estimation misc Photogrammetric point clouds Vegetation Index Weighted Canopy Volume Model (CVM |
authorStr |
Maimaitijiang, Maitiniyazi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504557 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0924-2716 |
topic_title |
550 DE-600 38.73 bkl 74.41 bkl Vegetation Index Weighted Canopy Volume Model (CVM Canopy volume model (CVM) Vegetation index weighted canopy volume model (CVM Unmanned Aerial Systems (UAS) Biomass estimation Photogrammetric point clouds |
topic |
ddc 550 bkl 38.73 bkl 74.41 misc Canopy volume model (CVM) misc Vegetation index weighted canopy volume model (CVM misc Unmanned Aerial Systems (UAS) misc Biomass estimation misc Photogrammetric point clouds |
topic_unstemmed |
ddc 550 bkl 38.73 bkl 74.41 misc Canopy volume model (CVM) misc Vegetation index weighted canopy volume model (CVM misc Unmanned Aerial Systems (UAS) misc Biomass estimation misc Photogrammetric point clouds |
topic_browse |
ddc 550 bkl 38.73 bkl 74.41 misc Canopy volume model (CVM) misc Vegetation index weighted canopy volume model (CVM misc Unmanned Aerial Systems (UAS) misc Biomass estimation misc Photogrammetric point clouds |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
ISPRS journal of photogrammetry and remote sensing |
hierarchy_parent_id |
320504557 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
ISPRS journal of photogrammetry and remote sensing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 |
title |
Vegetation Index Weighted Canopy Volume Model (CVM |
ctrlnum |
(DE-627)ELV002060779 (ELSEVIER)S0924-2716(19)30064-4 |
title_full |
Vegetation Index Weighted Canopy Volume Model (CVM |
author_sort |
Maimaitijiang, Maitiniyazi |
journal |
ISPRS journal of photogrammetry and remote sensing |
journalStr |
ISPRS journal of photogrammetry and remote sensing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
27 |
author_browse |
Maimaitijiang, Maitiniyazi Sagan, Vasit Sidike, Paheding Maimaitiyiming, Matthew Hartling, Sean Peterson, Kyle T. Maw, Michael J.W. Shakoor, Nadia Mockler, Todd Fritschi, Felix B. |
container_volume |
151 |
class |
550 DE-600 38.73 bkl 74.41 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Maimaitijiang, Maitiniyazi |
doi_str_mv |
10.1016/j.isprsjprs.2019.03.003 |
normlink |
(ORCID)0000-0003-4712-9672 |
normlink_prefix_str_mv |
(orcid)0000-0003-4712-9672 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
vegetation index weighted canopy volume model (cvm |
title_auth |
Vegetation Index Weighted Canopy Volume Model (CVM |
abstract |
Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. |
abstractGer |
Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. |
abstract_unstemmed |
Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Vegetation Index Weighted Canopy Volume Model (CVM |
remote_bool |
true |
author2 |
Sagan, Vasit Sidike, Paheding Maimaitiyiming, Matthew Hartling, Sean Peterson, Kyle T. Maw, Michael J.W. Shakoor, Nadia Mockler, Todd Fritschi, Felix B. |
author2Str |
Sagan, Vasit Sidike, Paheding Maimaitiyiming, Matthew Hartling, Sean Peterson, Kyle T. Maw, Michael J.W. Shakoor, Nadia Mockler, Todd Fritschi, Felix B. |
ppnlink |
320504557 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.isprsjprs.2019.03.003 |
up_date |
2024-07-06T23:29:07.331Z |
_version_ |
1803874255330344960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002060779</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160925.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isprsjprs.2019.03.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002060779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-2716(19)30064-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maimaitijiang, Maitiniyazi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vegetation Index Weighted Canopy Volume Model (CVM</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Crop biomass estimation with high accuracy at low-cost is valuable for precision agriculture and high-throughput phenotyping. Recent technological advances in Unmanned Aerial Systems (UAS) significantly facilitate data acquisition at low-cost along with high spatial, spectral, and temporal resolution. The objective of this study was to explore the potential of UAS RGB imagery-derived spectral, structural, and volumetric information, as well as a proposed vegetation index weighted canopy volume model (CVMVI) for soybean [Glycine max (L.) Merr.] aboveground biomass (AGB) estimation. RGB images were collected from low-cost UAS throughout the growing season at a field site near Columbia, Missouri, USA. High-density point clouds were produced using the structure from motion (SfM) technique through a photogrammetric workflow based on UAS stereo images. Two-dimensional (2D) canopy structure metrics such as canopy height (CH) and canopy projected basal area (BA), as well as three-dimensional (3D) volumetric metrics such as canopy volume model (CVM) were derived from photogrammetric point clouds. A variety of vegetation indices (VIs) were also extracted from RGB orthomosaics. Then, CVMVI, which combines canopy spectral and volumetric information, was proposed. Commonly used regression models were established based on the UAS-derived information and field- measured AGB with a leave-one-out cross-validation. The results show that: (1) In general, canopy 2D structural metrics CH and BA yielded higher correlation with AGB than VIs. (2) Three-dimensional metrics, such as CVM, that encompass both horizontal and vertical properties of canopy provided better estimates for AGB compared to 2D structural metrics (R2 = 0.849; RRMSE = 18.7%; MPSE = 20.8%). (3) Optimized CVMVI, which incorporates both canopy spectral and 3D volumetric information outperformed the other indices and metrics, and was a better predictor for AGB estimation (R2 = 0.893; RRMSE = 16.3%; MPSE = 19.5%). In addition, CVMVI showed equal prediction power for different genotypes, which indicates its potential for high-throughput soybean biomass estimation. Moreover, a CVMVI based univariate regression model yielded AGB predicting capability comparable to multivariate complex regression models such as stepwise multilinear regression (SMR) and partial least squares regression (PLSR) that incorporate multiple canopy spectral indices and structural metrics. Overall, this study reveals the potential of canopy spectral, structural and volumetric information, and their combination (i.e., CVMVI) for estimations of soybean AGB. CVMVI was shown to be simple but effective in estimating AGB, and could be applied for high-throughput phenotyping and precision agro-ecological applications and management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canopy volume model (CVM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vegetation index weighted canopy volume model (CVM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unmanned Aerial Systems (UAS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photogrammetric point clouds</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagan, Vasit</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4712-9672</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sidike, Paheding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maimaitiyiming, Matthew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartling, Sean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peterson, Kyle T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maw, Michael J.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shakoor, Nadia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mockler, Todd</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fritschi, Felix B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7</subfield><subfield code="t">ISPRS journal of photogrammetry and remote sensing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1989</subfield><subfield code="g">151, Seite 27-41</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504557</subfield><subfield code="w">(DE-600)2012663-3</subfield><subfield code="w">(DE-576)096806567</subfield><subfield code="x">0924-2716</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">pages:27-41</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.73</subfield><subfield code="j">Geodäsie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="h">27-41</subfield></datafield></record></collection>
|
score |
7.401664 |