Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile
Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplin...
Ausführliche Beschreibung
Autor*in: |
Hayes, Josh L. [verfasserIn] Calderón B, Rodrigo [verfasserIn] Deligne, Natalia I. [verfasserIn] Jenkins, Susanna F. [verfasserIn] Leonard, Graham S. [verfasserIn] McSporran, Ame M. [verfasserIn] Williams, George T. [verfasserIn] Wilson, Thomas M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of volcanology and geothermal research - Amsterdam [u.a.] : Elsevier Science, 1976, 374, Seite 142-159 |
---|---|
Übergeordnetes Werk: |
volume:374 ; pages:142-159 |
DOI / URN: |
10.1016/j.jvolgeores.2019.02.017 |
---|
Katalog-ID: |
ELV002071916 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002071916 | ||
003 | DE-627 | ||
005 | 20230524143635.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jvolgeores.2019.02.017 |2 doi | |
035 | |a (DE-627)ELV002071916 | ||
035 | |a (ELSEVIER)S0377-0273(18)30371-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 38.37 |2 bkl | ||
084 | |a 38.71 |2 bkl | ||
100 | 1 | |a Hayes, Josh L. |e verfasserin |0 (orcid)0000-0001-7099-1063 |4 aut | |
245 | 1 | 0 | |a Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. | ||
650 | 4 | |a Calbuco | |
650 | 4 | |a Tephra fall | |
650 | 4 | |a Lahar | |
650 | 4 | |a Volcanic hazard | |
650 | 4 | |a Risk assessment | |
650 | 4 | |a Impact assessment | |
650 | 4 | |a Damage assessment | |
650 | 4 | |a Building vulnerability | |
650 | 4 | |a Damage scale | |
700 | 1 | |a Calderón B, Rodrigo |e verfasserin |4 aut | |
700 | 1 | |a Deligne, Natalia I. |e verfasserin |4 aut | |
700 | 1 | |a Jenkins, Susanna F. |e verfasserin |4 aut | |
700 | 1 | |a Leonard, Graham S. |e verfasserin |4 aut | |
700 | 1 | |a McSporran, Ame M. |e verfasserin |4 aut | |
700 | 1 | |a Williams, George T. |e verfasserin |4 aut | |
700 | 1 | |a Wilson, Thomas M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of volcanology and geothermal research |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 374, Seite 142-159 |h Online-Ressource |w (DE-627)303393165 |w (DE-600)1494881-3 |w (DE-576)081952872 |x 0377-0273 |7 nnns |
773 | 1 | 8 | |g volume:374 |g pages:142-159 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.37 |j Magmatismus |j Vulkanologie |
936 | b | k | |a 38.71 |j Geomagnetik |j Geoelektrik |j Geothermie |
951 | |a AR | ||
952 | |d 374 |h 142-159 |
author_variant |
j l h jl jlh b r c br brc n i d ni nid s f j sf sfj g s l gs gsl a m m am amm g t w gt gtw t m w tm tmw |
---|---|
matchkey_str |
article:03770273:2019----::ibrrmduligaaermehaalnlhr05a |
hierarchy_sort_str |
2019 |
bklnumber |
38.37 38.71 |
publishDate |
2019 |
allfields |
10.1016/j.jvolgeores.2019.02.017 doi (DE-627)ELV002071916 (ELSEVIER)S0377-0273(18)30371-8 DE-627 ger DE-627 rda eng 550 DE-600 38.37 bkl 38.71 bkl Hayes, Josh L. verfasserin (orcid)0000-0001-7099-1063 aut Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. Calbuco Tephra fall Lahar Volcanic hazard Risk assessment Impact assessment Damage assessment Building vulnerability Damage scale Calderón B, Rodrigo verfasserin aut Deligne, Natalia I. verfasserin aut Jenkins, Susanna F. verfasserin aut Leonard, Graham S. verfasserin aut McSporran, Ame M. verfasserin aut Williams, George T. verfasserin aut Wilson, Thomas M. verfasserin aut Enthalten in Journal of volcanology and geothermal research Amsterdam [u.a.] : Elsevier Science, 1976 374, Seite 142-159 Online-Ressource (DE-627)303393165 (DE-600)1494881-3 (DE-576)081952872 0377-0273 nnns volume:374 pages:142-159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.37 Magmatismus Vulkanologie 38.71 Geomagnetik Geoelektrik Geothermie AR 374 142-159 |
spelling |
10.1016/j.jvolgeores.2019.02.017 doi (DE-627)ELV002071916 (ELSEVIER)S0377-0273(18)30371-8 DE-627 ger DE-627 rda eng 550 DE-600 38.37 bkl 38.71 bkl Hayes, Josh L. verfasserin (orcid)0000-0001-7099-1063 aut Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. Calbuco Tephra fall Lahar Volcanic hazard Risk assessment Impact assessment Damage assessment Building vulnerability Damage scale Calderón B, Rodrigo verfasserin aut Deligne, Natalia I. verfasserin aut Jenkins, Susanna F. verfasserin aut Leonard, Graham S. verfasserin aut McSporran, Ame M. verfasserin aut Williams, George T. verfasserin aut Wilson, Thomas M. verfasserin aut Enthalten in Journal of volcanology and geothermal research Amsterdam [u.a.] : Elsevier Science, 1976 374, Seite 142-159 Online-Ressource (DE-627)303393165 (DE-600)1494881-3 (DE-576)081952872 0377-0273 nnns volume:374 pages:142-159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.37 Magmatismus Vulkanologie 38.71 Geomagnetik Geoelektrik Geothermie AR 374 142-159 |
allfields_unstemmed |
10.1016/j.jvolgeores.2019.02.017 doi (DE-627)ELV002071916 (ELSEVIER)S0377-0273(18)30371-8 DE-627 ger DE-627 rda eng 550 DE-600 38.37 bkl 38.71 bkl Hayes, Josh L. verfasserin (orcid)0000-0001-7099-1063 aut Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. Calbuco Tephra fall Lahar Volcanic hazard Risk assessment Impact assessment Damage assessment Building vulnerability Damage scale Calderón B, Rodrigo verfasserin aut Deligne, Natalia I. verfasserin aut Jenkins, Susanna F. verfasserin aut Leonard, Graham S. verfasserin aut McSporran, Ame M. verfasserin aut Williams, George T. verfasserin aut Wilson, Thomas M. verfasserin aut Enthalten in Journal of volcanology and geothermal research Amsterdam [u.a.] : Elsevier Science, 1976 374, Seite 142-159 Online-Ressource (DE-627)303393165 (DE-600)1494881-3 (DE-576)081952872 0377-0273 nnns volume:374 pages:142-159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.37 Magmatismus Vulkanologie 38.71 Geomagnetik Geoelektrik Geothermie AR 374 142-159 |
allfieldsGer |
10.1016/j.jvolgeores.2019.02.017 doi (DE-627)ELV002071916 (ELSEVIER)S0377-0273(18)30371-8 DE-627 ger DE-627 rda eng 550 DE-600 38.37 bkl 38.71 bkl Hayes, Josh L. verfasserin (orcid)0000-0001-7099-1063 aut Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. Calbuco Tephra fall Lahar Volcanic hazard Risk assessment Impact assessment Damage assessment Building vulnerability Damage scale Calderón B, Rodrigo verfasserin aut Deligne, Natalia I. verfasserin aut Jenkins, Susanna F. verfasserin aut Leonard, Graham S. verfasserin aut McSporran, Ame M. verfasserin aut Williams, George T. verfasserin aut Wilson, Thomas M. verfasserin aut Enthalten in Journal of volcanology and geothermal research Amsterdam [u.a.] : Elsevier Science, 1976 374, Seite 142-159 Online-Ressource (DE-627)303393165 (DE-600)1494881-3 (DE-576)081952872 0377-0273 nnns volume:374 pages:142-159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.37 Magmatismus Vulkanologie 38.71 Geomagnetik Geoelektrik Geothermie AR 374 142-159 |
allfieldsSound |
10.1016/j.jvolgeores.2019.02.017 doi (DE-627)ELV002071916 (ELSEVIER)S0377-0273(18)30371-8 DE-627 ger DE-627 rda eng 550 DE-600 38.37 bkl 38.71 bkl Hayes, Josh L. verfasserin (orcid)0000-0001-7099-1063 aut Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. Calbuco Tephra fall Lahar Volcanic hazard Risk assessment Impact assessment Damage assessment Building vulnerability Damage scale Calderón B, Rodrigo verfasserin aut Deligne, Natalia I. verfasserin aut Jenkins, Susanna F. verfasserin aut Leonard, Graham S. verfasserin aut McSporran, Ame M. verfasserin aut Williams, George T. verfasserin aut Wilson, Thomas M. verfasserin aut Enthalten in Journal of volcanology and geothermal research Amsterdam [u.a.] : Elsevier Science, 1976 374, Seite 142-159 Online-Ressource (DE-627)303393165 (DE-600)1494881-3 (DE-576)081952872 0377-0273 nnns volume:374 pages:142-159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.37 Magmatismus Vulkanologie 38.71 Geomagnetik Geoelektrik Geothermie AR 374 142-159 |
language |
English |
source |
Enthalten in Journal of volcanology and geothermal research 374, Seite 142-159 volume:374 pages:142-159 |
sourceStr |
Enthalten in Journal of volcanology and geothermal research 374, Seite 142-159 volume:374 pages:142-159 |
format_phy_str_mv |
Article |
bklname |
Magmatismus Vulkanologie Geomagnetik Geoelektrik Geothermie |
institution |
findex.gbv.de |
topic_facet |
Calbuco Tephra fall Lahar Volcanic hazard Risk assessment Impact assessment Damage assessment Building vulnerability Damage scale |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of volcanology and geothermal research |
authorswithroles_txt_mv |
Hayes, Josh L. @@aut@@ Calderón B, Rodrigo @@aut@@ Deligne, Natalia I. @@aut@@ Jenkins, Susanna F. @@aut@@ Leonard, Graham S. @@aut@@ McSporran, Ame M. @@aut@@ Williams, George T. @@aut@@ Wilson, Thomas M. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
303393165 |
dewey-sort |
3550 |
id |
ELV002071916 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002071916</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143635.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jvolgeores.2019.02.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002071916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0377-0273(18)30371-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hayes, Josh L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7099-1063</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calbuco</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tephra fall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lahar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic hazard</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Building vulnerability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage scale</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calderón B, Rodrigo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deligne, Natalia I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jenkins, Susanna F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leonard, Graham S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McSporran, Ame M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, George T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilson, Thomas M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of volcanology and geothermal research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">374, Seite 142-159</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303393165</subfield><subfield code="w">(DE-600)1494881-3</subfield><subfield code="w">(DE-576)081952872</subfield><subfield code="x">0377-0273</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:374</subfield><subfield code="g">pages:142-159</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.37</subfield><subfield code="j">Magmatismus</subfield><subfield code="j">Vulkanologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.71</subfield><subfield code="j">Geomagnetik</subfield><subfield code="j">Geoelektrik</subfield><subfield code="j">Geothermie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">374</subfield><subfield code="h">142-159</subfield></datafield></record></collection>
|
author |
Hayes, Josh L. |
spellingShingle |
Hayes, Josh L. ddc 550 bkl 38.37 bkl 38.71 misc Calbuco misc Tephra fall misc Lahar misc Volcanic hazard misc Risk assessment misc Impact assessment misc Damage assessment misc Building vulnerability misc Damage scale Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile |
authorStr |
Hayes, Josh L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)303393165 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0377-0273 |
topic_title |
550 DE-600 38.37 bkl 38.71 bkl Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile Calbuco Tephra fall Lahar Volcanic hazard Risk assessment Impact assessment Damage assessment Building vulnerability Damage scale |
topic |
ddc 550 bkl 38.37 bkl 38.71 misc Calbuco misc Tephra fall misc Lahar misc Volcanic hazard misc Risk assessment misc Impact assessment misc Damage assessment misc Building vulnerability misc Damage scale |
topic_unstemmed |
ddc 550 bkl 38.37 bkl 38.71 misc Calbuco misc Tephra fall misc Lahar misc Volcanic hazard misc Risk assessment misc Impact assessment misc Damage assessment misc Building vulnerability misc Damage scale |
topic_browse |
ddc 550 bkl 38.37 bkl 38.71 misc Calbuco misc Tephra fall misc Lahar misc Volcanic hazard misc Risk assessment misc Impact assessment misc Damage assessment misc Building vulnerability misc Damage scale |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of volcanology and geothermal research |
hierarchy_parent_id |
303393165 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of volcanology and geothermal research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)303393165 (DE-600)1494881-3 (DE-576)081952872 |
title |
Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile |
ctrlnum |
(DE-627)ELV002071916 (ELSEVIER)S0377-0273(18)30371-8 |
title_full |
Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile |
author_sort |
Hayes, Josh L. |
journal |
Journal of volcanology and geothermal research |
journalStr |
Journal of volcanology and geothermal research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
142 |
author_browse |
Hayes, Josh L. Calderón B, Rodrigo Deligne, Natalia I. Jenkins, Susanna F. Leonard, Graham S. McSporran, Ame M. Williams, George T. Wilson, Thomas M. |
container_volume |
374 |
class |
550 DE-600 38.37 bkl 38.71 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hayes, Josh L. |
doi_str_mv |
10.1016/j.jvolgeores.2019.02.017 |
normlink |
(ORCID)0000-0001-7099-1063 |
normlink_prefix_str_mv |
(orcid)0000-0001-7099-1063 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
timber-framed building damage from tephra fall and lahar: 2015 calbuco eruption, chile |
title_auth |
Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile |
abstract |
Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. |
abstractGer |
Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. |
abstract_unstemmed |
Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile |
remote_bool |
true |
author2 |
Calderón B, Rodrigo Deligne, Natalia I. Jenkins, Susanna F. Leonard, Graham S. McSporran, Ame M. Williams, George T. Wilson, Thomas M. |
author2Str |
Calderón B, Rodrigo Deligne, Natalia I. Jenkins, Susanna F. Leonard, Graham S. McSporran, Ame M. Williams, George T. Wilson, Thomas M. |
ppnlink |
303393165 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jvolgeores.2019.02.017 |
up_date |
2024-07-06T23:31:22.538Z |
_version_ |
1803874397102014464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002071916</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143635.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jvolgeores.2019.02.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002071916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0377-0273(18)30371-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hayes, Josh L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7099-1063</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Assessing the damage to buildings from volcanic eruptions is an important aspect of volcanic risk assessment and management. However, there is a limited empirical evidence base to draw upon when describing the relation between volcanic hazard intensity and resulting physical damage. The 2015 subplinian eruption of Calbuco volcano, Chile, caused damage to buildings near the volcano because of tephra fall and lahars. Chilean authorities conducted a damage assessment of 961 properties (990 buildings) to inform an assistance programme for property owners affected by the eruption. Property assessments typically contained observations and classification of damage to a house, and in some instances accessory buildings such as sheds, garages, and exterior storage rooms. In this study we used this unique damage data set to adapt damage state frameworks for tephra fall and lahar for classifying and analysing damage observations. We developed data quality indicators to provide transparency for how we accounted for data quality issues. We assigned a tephra and/or lahar damage state to 571 buildings (530 houses and 41 accessory buildings). The 419 buildings for which we did not assign a damage state either had too little information or fell outside of tephra and/or lahar hazard zones. The minimum tephra thickness isopach band that caused complete collapse was 10 to 15 cm (dry deposit loading ~1 to 1.6 kN m−2, saturated deposit loading 1.6 to 2.4 kN m−2), but most commonly (55% of tephra exposed DS5 houses n = 11), this occurred at 15 to 30 cm (dry deposit loading ~1.5 to 3.3 kN m−2, saturated deposit loading 2.4 to 4.8 kN m−2). Lahar damage was typically described as complete (DS5), with 26 houses being swept away or destroyed around the Blanco South River. Our results add to the limited evidence base of post-eruption tephra and lahar impacts to buildings and contribute to volcanic risk and impact assessment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calbuco</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tephra fall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lahar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic hazard</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Building vulnerability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage scale</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calderón B, Rodrigo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deligne, Natalia I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jenkins, Susanna F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leonard, Graham S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McSporran, Ame M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, George T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilson, Thomas M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of volcanology and geothermal research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">374, Seite 142-159</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303393165</subfield><subfield code="w">(DE-600)1494881-3</subfield><subfield code="w">(DE-576)081952872</subfield><subfield code="x">0377-0273</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:374</subfield><subfield code="g">pages:142-159</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.37</subfield><subfield code="j">Magmatismus</subfield><subfield code="j">Vulkanologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.71</subfield><subfield code="j">Geomagnetik</subfield><subfield code="j">Geoelektrik</subfield><subfield code="j">Geothermie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">374</subfield><subfield code="h">142-159</subfield></datafield></record></collection>
|
score |
7.400672 |