The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model
The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a...
Ausführliche Beschreibung
Autor*in: |
Zhang, Guojie [verfasserIn] Zhang, Xinzhe [verfasserIn] Wang, Fangfang [verfasserIn] Wang, Dingbiao [verfasserIn] Jin, Zunlong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of multiphase flow - Oxford : Pergamon Press, 1973, 114, Seite 180-191 |
---|---|
Übergeordnetes Werk: |
volume:114 ; pages:180-191 |
DOI / URN: |
10.1016/j.ijmultiphaseflow.2019.03.005 |
---|
Katalog-ID: |
ELV002123363 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002123363 | ||
003 | DE-627 | ||
005 | 20230524161441.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijmultiphaseflow.2019.03.005 |2 doi | |
035 | |a (DE-627)ELV002123363 | ||
035 | |a (ELSEVIER)S0301-9322(18)30944-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Zhang, Guojie |e verfasserin |4 aut | |
245 | 1 | 0 | |a The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. | ||
650 | 4 | |a Modified model | |
650 | 4 | |a Nucleation process | |
650 | 4 | |a Minimum supercooling | |
650 | 4 | |a Three-dimensional cascade | |
700 | 1 | |a Zhang, Xinzhe |e verfasserin |4 aut | |
700 | 1 | |a Wang, Fangfang |e verfasserin |4 aut | |
700 | 1 | |a Wang, Dingbiao |e verfasserin |4 aut | |
700 | 1 | |a Jin, Zunlong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of multiphase flow |d Oxford : Pergamon Press, 1973 |g 114, Seite 180-191 |h Online-Ressource |w (DE-627)320510204 |w (DE-600)2013320-0 |w (DE-576)096806605 |x 1879-3533 |7 nnns |
773 | 1 | 8 | |g volume:114 |g pages:180-191 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.00 |j Physik: Allgemeines |
951 | |a AR | ||
952 | |d 114 |h 180-191 |
author_variant |
g z gz x z xz f w fw d w dw z j zj |
---|---|
matchkey_str |
article:18793533:2019----::hrltosibtenhncetopoesnbudrcniinonnqiirucnes |
hierarchy_sort_str |
2019 |
bklnumber |
33.00 |
publishDate |
2019 |
allfields |
10.1016/j.ijmultiphaseflow.2019.03.005 doi (DE-627)ELV002123363 (ELSEVIER)S0301-9322(18)30944-3 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Zhang, Guojie verfasserin aut The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. Modified model Nucleation process Minimum supercooling Three-dimensional cascade Zhang, Xinzhe verfasserin aut Wang, Fangfang verfasserin aut Wang, Dingbiao verfasserin aut Jin, Zunlong verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 114, Seite 180-191 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:114 pages:180-191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 114 180-191 |
spelling |
10.1016/j.ijmultiphaseflow.2019.03.005 doi (DE-627)ELV002123363 (ELSEVIER)S0301-9322(18)30944-3 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Zhang, Guojie verfasserin aut The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. Modified model Nucleation process Minimum supercooling Three-dimensional cascade Zhang, Xinzhe verfasserin aut Wang, Fangfang verfasserin aut Wang, Dingbiao verfasserin aut Jin, Zunlong verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 114, Seite 180-191 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:114 pages:180-191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 114 180-191 |
allfields_unstemmed |
10.1016/j.ijmultiphaseflow.2019.03.005 doi (DE-627)ELV002123363 (ELSEVIER)S0301-9322(18)30944-3 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Zhang, Guojie verfasserin aut The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. Modified model Nucleation process Minimum supercooling Three-dimensional cascade Zhang, Xinzhe verfasserin aut Wang, Fangfang verfasserin aut Wang, Dingbiao verfasserin aut Jin, Zunlong verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 114, Seite 180-191 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:114 pages:180-191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 114 180-191 |
allfieldsGer |
10.1016/j.ijmultiphaseflow.2019.03.005 doi (DE-627)ELV002123363 (ELSEVIER)S0301-9322(18)30944-3 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Zhang, Guojie verfasserin aut The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. Modified model Nucleation process Minimum supercooling Three-dimensional cascade Zhang, Xinzhe verfasserin aut Wang, Fangfang verfasserin aut Wang, Dingbiao verfasserin aut Jin, Zunlong verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 114, Seite 180-191 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:114 pages:180-191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 114 180-191 |
allfieldsSound |
10.1016/j.ijmultiphaseflow.2019.03.005 doi (DE-627)ELV002123363 (ELSEVIER)S0301-9322(18)30944-3 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Zhang, Guojie verfasserin aut The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. Modified model Nucleation process Minimum supercooling Three-dimensional cascade Zhang, Xinzhe verfasserin aut Wang, Fangfang verfasserin aut Wang, Dingbiao verfasserin aut Jin, Zunlong verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 114, Seite 180-191 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:114 pages:180-191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 114 180-191 |
language |
English |
source |
Enthalten in International journal of multiphase flow 114, Seite 180-191 volume:114 pages:180-191 |
sourceStr |
Enthalten in International journal of multiphase flow 114, Seite 180-191 volume:114 pages:180-191 |
format_phy_str_mv |
Article |
bklname |
Physik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Modified model Nucleation process Minimum supercooling Three-dimensional cascade |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of multiphase flow |
authorswithroles_txt_mv |
Zhang, Guojie @@aut@@ Zhang, Xinzhe @@aut@@ Wang, Fangfang @@aut@@ Wang, Dingbiao @@aut@@ Jin, Zunlong @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320510204 |
dewey-sort |
3530 |
id |
ELV002123363 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002123363</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmultiphaseflow.2019.03.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002123363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-9322(18)30944-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Guojie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modified model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nucleation process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum supercooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-dimensional cascade</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xinzhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Fangfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dingbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Zunlong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of multiphase flow</subfield><subfield code="d">Oxford : Pergamon Press, 1973</subfield><subfield code="g">114, Seite 180-191</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320510204</subfield><subfield code="w">(DE-600)2013320-0</subfield><subfield code="w">(DE-576)096806605</subfield><subfield code="x">1879-3533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">pages:180-191</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="h">180-191</subfield></datafield></record></collection>
|
author |
Zhang, Guojie |
spellingShingle |
Zhang, Guojie ddc 530 bkl 33.00 misc Modified model misc Nucleation process misc Minimum supercooling misc Three-dimensional cascade The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model |
authorStr |
Zhang, Guojie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320510204 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3533 |
topic_title |
530 DE-600 33.00 bkl The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model Modified model Nucleation process Minimum supercooling Three-dimensional cascade |
topic |
ddc 530 bkl 33.00 misc Modified model misc Nucleation process misc Minimum supercooling misc Three-dimensional cascade |
topic_unstemmed |
ddc 530 bkl 33.00 misc Modified model misc Nucleation process misc Minimum supercooling misc Three-dimensional cascade |
topic_browse |
ddc 530 bkl 33.00 misc Modified model misc Nucleation process misc Minimum supercooling misc Three-dimensional cascade |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of multiphase flow |
hierarchy_parent_id |
320510204 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of multiphase flow |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 |
title |
The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model |
ctrlnum |
(DE-627)ELV002123363 (ELSEVIER)S0301-9322(18)30944-3 |
title_full |
The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model |
author_sort |
Zhang, Guojie |
journal |
International journal of multiphase flow |
journalStr |
International journal of multiphase flow |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
180 |
author_browse |
Zhang, Guojie Zhang, Xinzhe Wang, Fangfang Wang, Dingbiao Jin, Zunlong |
container_volume |
114 |
class |
530 DE-600 33.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Guojie |
doi_str_mv |
10.1016/j.ijmultiphaseflow.2019.03.005 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model |
title_auth |
The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model |
abstract |
The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. |
abstractGer |
The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. |
abstract_unstemmed |
The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model |
remote_bool |
true |
author2 |
Zhang, Xinzhe Wang, Fangfang Wang, Dingbiao Jin, Zunlong |
author2Str |
Zhang, Xinzhe Wang, Fangfang Wang, Dingbiao Jin, Zunlong |
ppnlink |
320510204 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijmultiphaseflow.2019.03.005 |
up_date |
2024-07-06T23:41:36.672Z |
_version_ |
1803875041069236224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002123363</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmultiphaseflow.2019.03.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002123363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-9322(18)30944-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Guojie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this work is to investigate the relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. Firstly, a modified model is developed to predict the non-equilibrium condensation flow. The modified model is validated in a nozzle and stator cascade, which shows a greater agreement with the experimental data compared with original model. Secondly, the influence of inlet steam superheat degree on the nucleation process is investigated. The results show that: 1. The inlet steam superheat degree just plays an important role in the nucleation zone and the location of nucleation beginning. 2. The steam superheat degree has no effect on the minimum supercooling degree required for nucleation, which is about 17 K. It should be related to the property of vapor. Thirdly, the influence of the steam expansion rate on the nucleation process is studied. The results show that with the increment of the vapor expansion rate, the pressure rise becomes obvious, but no matter how the vapor expansion rate change, the minimum supercooling degree required for nucleation keeps constant, which is about 17 K. At last, the non-equilibrium condensation flow is investigated numerically in three-dimensional cascade. The results show that with the span increasing, the expansion rate gradually decreases and the nucleation rate decreases but the nucleation zone increases. Besides, the liquid mass fraction reduces with the span increasing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modified model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nucleation process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum supercooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-dimensional cascade</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xinzhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Fangfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dingbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Zunlong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of multiphase flow</subfield><subfield code="d">Oxford : Pergamon Press, 1973</subfield><subfield code="g">114, Seite 180-191</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320510204</subfield><subfield code="w">(DE-600)2013320-0</subfield><subfield code="w">(DE-576)096806605</subfield><subfield code="x">1879-3533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">pages:180-191</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="h">180-191</subfield></datafield></record></collection>
|
score |
7.400757 |