Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions
Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performa...
Ausführliche Beschreibung
Autor*in: |
Guarracino, Ilaria [verfasserIn] Freeman, James [verfasserIn] Ramos, Alba [verfasserIn] Kalogirou, Soteris A. [verfasserIn] Ekins-Daukes, Nicholas J. [verfasserIn] Markides, Christos N. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Collector performance analysis |
---|
Übergeordnetes Werk: |
Enthalten in: Applied energy - Amsterdam [u.a.] : Elsevier Science, 1975, 240, Seite 1014-1030 |
---|---|
Übergeordnetes Werk: |
volume:240 ; pages:1014-1030 |
DOI / URN: |
10.1016/j.apenergy.2018.12.049 |
---|
Katalog-ID: |
ELV002146967 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002146967 | ||
003 | DE-627 | ||
005 | 20230524133243.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apenergy.2018.12.049 |2 doi | |
035 | |a (DE-627)ELV002146967 | ||
035 | |a (ELSEVIER)S0306-2619(18)31863-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 52.50 |2 bkl | ||
100 | 1 | |a Guarracino, Ilaria |e verfasserin |4 aut | |
245 | 1 | 0 | |a Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. | ||
650 | 4 | |a Hybrid PVT collectors | |
650 | 4 | |a Solar collectors | |
650 | 4 | |a Collector performance analysis | |
650 | 4 | |a Experimental characterisation of solar collectors | |
650 | 4 | |a Dynamic modelling | |
700 | 1 | |a Freeman, James |e verfasserin |4 aut | |
700 | 1 | |a Ramos, Alba |e verfasserin |4 aut | |
700 | 1 | |a Kalogirou, Soteris A. |e verfasserin |4 aut | |
700 | 1 | |a Ekins-Daukes, Nicholas J. |e verfasserin |4 aut | |
700 | 1 | |a Markides, Christos N. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied energy |d Amsterdam [u.a.] : Elsevier Science, 1975 |g 240, Seite 1014-1030 |h Online-Ressource |w (DE-627)320406709 |w (DE-600)2000772-3 |w (DE-576)256140251 |x 1872-9118 |7 nnns |
773 | 1 | 8 | |g volume:240 |g pages:1014-1030 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.50 |j Energietechnik: Allgemeines |
951 | |a AR | ||
952 | |d 240 |h 1014-1030 |
author_variant |
i g ig j f jf a r ar s a k sa sak n j e d nje njed c n m cn cnm |
---|---|
matchkey_str |
article:18729118:2018----::ytmtcetnohbiptemlvslrolcosntayttad |
hierarchy_sort_str |
2018 |
bklnumber |
52.50 |
publishDate |
2018 |
allfields |
10.1016/j.apenergy.2018.12.049 doi (DE-627)ELV002146967 (ELSEVIER)S0306-2619(18)31863-4 DE-627 ger DE-627 rda eng 620 DE-600 52.50 bkl Guarracino, Ilaria verfasserin aut Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. Hybrid PVT collectors Solar collectors Collector performance analysis Experimental characterisation of solar collectors Dynamic modelling Freeman, James verfasserin aut Ramos, Alba verfasserin aut Kalogirou, Soteris A. verfasserin aut Ekins-Daukes, Nicholas J. verfasserin aut Markides, Christos N. verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 240, Seite 1014-1030 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:240 pages:1014-1030 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines AR 240 1014-1030 |
spelling |
10.1016/j.apenergy.2018.12.049 doi (DE-627)ELV002146967 (ELSEVIER)S0306-2619(18)31863-4 DE-627 ger DE-627 rda eng 620 DE-600 52.50 bkl Guarracino, Ilaria verfasserin aut Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. Hybrid PVT collectors Solar collectors Collector performance analysis Experimental characterisation of solar collectors Dynamic modelling Freeman, James verfasserin aut Ramos, Alba verfasserin aut Kalogirou, Soteris A. verfasserin aut Ekins-Daukes, Nicholas J. verfasserin aut Markides, Christos N. verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 240, Seite 1014-1030 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:240 pages:1014-1030 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines AR 240 1014-1030 |
allfields_unstemmed |
10.1016/j.apenergy.2018.12.049 doi (DE-627)ELV002146967 (ELSEVIER)S0306-2619(18)31863-4 DE-627 ger DE-627 rda eng 620 DE-600 52.50 bkl Guarracino, Ilaria verfasserin aut Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. Hybrid PVT collectors Solar collectors Collector performance analysis Experimental characterisation of solar collectors Dynamic modelling Freeman, James verfasserin aut Ramos, Alba verfasserin aut Kalogirou, Soteris A. verfasserin aut Ekins-Daukes, Nicholas J. verfasserin aut Markides, Christos N. verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 240, Seite 1014-1030 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:240 pages:1014-1030 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines AR 240 1014-1030 |
allfieldsGer |
10.1016/j.apenergy.2018.12.049 doi (DE-627)ELV002146967 (ELSEVIER)S0306-2619(18)31863-4 DE-627 ger DE-627 rda eng 620 DE-600 52.50 bkl Guarracino, Ilaria verfasserin aut Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. Hybrid PVT collectors Solar collectors Collector performance analysis Experimental characterisation of solar collectors Dynamic modelling Freeman, James verfasserin aut Ramos, Alba verfasserin aut Kalogirou, Soteris A. verfasserin aut Ekins-Daukes, Nicholas J. verfasserin aut Markides, Christos N. verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 240, Seite 1014-1030 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:240 pages:1014-1030 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines AR 240 1014-1030 |
allfieldsSound |
10.1016/j.apenergy.2018.12.049 doi (DE-627)ELV002146967 (ELSEVIER)S0306-2619(18)31863-4 DE-627 ger DE-627 rda eng 620 DE-600 52.50 bkl Guarracino, Ilaria verfasserin aut Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. Hybrid PVT collectors Solar collectors Collector performance analysis Experimental characterisation of solar collectors Dynamic modelling Freeman, James verfasserin aut Ramos, Alba verfasserin aut Kalogirou, Soteris A. verfasserin aut Ekins-Daukes, Nicholas J. verfasserin aut Markides, Christos N. verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 240, Seite 1014-1030 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:240 pages:1014-1030 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines AR 240 1014-1030 |
language |
English |
source |
Enthalten in Applied energy 240, Seite 1014-1030 volume:240 pages:1014-1030 |
sourceStr |
Enthalten in Applied energy 240, Seite 1014-1030 volume:240 pages:1014-1030 |
format_phy_str_mv |
Article |
bklname |
Energietechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Hybrid PVT collectors Solar collectors Collector performance analysis Experimental characterisation of solar collectors Dynamic modelling |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Applied energy |
authorswithroles_txt_mv |
Guarracino, Ilaria @@aut@@ Freeman, James @@aut@@ Ramos, Alba @@aut@@ Kalogirou, Soteris A. @@aut@@ Ekins-Daukes, Nicholas J. @@aut@@ Markides, Christos N. @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320406709 |
dewey-sort |
3620 |
id |
ELV002146967 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002146967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524133243.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apenergy.2018.12.049</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002146967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-2619(18)31863-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guarracino, Ilaria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid PVT collectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar collectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collector performance analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental characterisation of solar collectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freeman, James</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramos, Alba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalogirou, Soteris A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ekins-Daukes, Nicholas J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markides, Christos N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">240, Seite 1014-1030</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406709</subfield><subfield code="w">(DE-600)2000772-3</subfield><subfield code="w">(DE-576)256140251</subfield><subfield code="x">1872-9118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:240</subfield><subfield code="g">pages:1014-1030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.50</subfield><subfield code="j">Energietechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">240</subfield><subfield code="h">1014-1030</subfield></datafield></record></collection>
|
author |
Guarracino, Ilaria |
spellingShingle |
Guarracino, Ilaria ddc 620 bkl 52.50 misc Hybrid PVT collectors misc Solar collectors misc Collector performance analysis misc Experimental characterisation of solar collectors misc Dynamic modelling Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions |
authorStr |
Guarracino, Ilaria |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320406709 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-9118 |
topic_title |
620 DE-600 52.50 bkl Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions Hybrid PVT collectors Solar collectors Collector performance analysis Experimental characterisation of solar collectors Dynamic modelling |
topic |
ddc 620 bkl 52.50 misc Hybrid PVT collectors misc Solar collectors misc Collector performance analysis misc Experimental characterisation of solar collectors misc Dynamic modelling |
topic_unstemmed |
ddc 620 bkl 52.50 misc Hybrid PVT collectors misc Solar collectors misc Collector performance analysis misc Experimental characterisation of solar collectors misc Dynamic modelling |
topic_browse |
ddc 620 bkl 52.50 misc Hybrid PVT collectors misc Solar collectors misc Collector performance analysis misc Experimental characterisation of solar collectors misc Dynamic modelling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied energy |
hierarchy_parent_id |
320406709 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Applied energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 |
title |
Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions |
ctrlnum |
(DE-627)ELV002146967 (ELSEVIER)S0306-2619(18)31863-4 |
title_full |
Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions |
author_sort |
Guarracino, Ilaria |
journal |
Applied energy |
journalStr |
Applied energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
1014 |
author_browse |
Guarracino, Ilaria Freeman, James Ramos, Alba Kalogirou, Soteris A. Ekins-Daukes, Nicholas J. Markides, Christos N. |
container_volume |
240 |
class |
620 DE-600 52.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Guarracino, Ilaria |
doi_str_mv |
10.1016/j.apenergy.2018.12.049 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
systematic testing of hybrid pv-thermal (pvt) solar collectors in steady-state and dynamic outdoor conditions |
title_auth |
Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions |
abstract |
Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. |
abstractGer |
Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. |
abstract_unstemmed |
Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions |
remote_bool |
true |
author2 |
Freeman, James Ramos, Alba Kalogirou, Soteris A. Ekins-Daukes, Nicholas J. Markides, Christos N. |
author2Str |
Freeman, James Ramos, Alba Kalogirou, Soteris A. Ekins-Daukes, Nicholas J. Markides, Christos N. |
ppnlink |
320406709 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apenergy.2018.12.049 |
up_date |
2024-07-06T23:46:15.046Z |
_version_ |
1803875332965531648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002146967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524133243.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apenergy.2018.12.049</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002146967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-2619(18)31863-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guarracino, Ilaria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼ 8 min is measured for a commercial PVT module, compared to < 2 min for a flat plate solar-thermal collector. It is also concluded that the use of a lumped, first-order dynamic model to represent the thermal mass of the PVT collector is not appropriate under certain irradiation regimes and may lead to inaccurate predictions of the system performance. This paper outlines a procedure for the testing and characterisation of solar collectors, provides valuable steady-state and dynamic performance characterisation data for various PVT collector designs, and also provides a framework for the application of this data in a system model to provide annual performance predictions in a range of geographical settings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid PVT collectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar collectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collector performance analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental characterisation of solar collectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freeman, James</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramos, Alba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalogirou, Soteris A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ekins-Daukes, Nicholas J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markides, Christos N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">240, Seite 1014-1030</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406709</subfield><subfield code="w">(DE-600)2000772-3</subfield><subfield code="w">(DE-576)256140251</subfield><subfield code="x">1872-9118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:240</subfield><subfield code="g">pages:1014-1030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.50</subfield><subfield code="j">Energietechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">240</subfield><subfield code="h">1014-1030</subfield></datafield></record></collection>
|
score |
7.4020987 |