ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices
There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized i...
Ausführliche Beschreibung
Autor*in: |
Gill, Sukhpal Singh [verfasserIn] Garraghan, Peter [verfasserIn] Buyya, Rajkumar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of systems and software - Amsterdam [u.a.] : Elsevier, 1979, 154, Seite 125-138 |
---|---|
Übergeordnetes Werk: |
volume:154 ; pages:125-138 |
DOI / URN: |
10.1016/j.jss.2019.04.058 |
---|
Katalog-ID: |
ELV002289342 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002289342 | ||
003 | DE-627 | ||
005 | 20230524132523.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jss.2019.04.058 |2 doi | |
035 | |a (DE-627)ELV002289342 | ||
035 | |a (ELSEVIER)S0164-1212(19)30098-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.52 |2 bkl | ||
100 | 1 | |a Gill, Sukhpal Singh |e verfasserin |0 (orcid)0000-0002-3913-0369 |4 aut | |
245 | 1 | 0 | |a ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. | ||
650 | 4 | |a Fog computing | |
650 | 4 | |a Cloud computing | |
650 | 4 | |a Internet of things | |
650 | 4 | |a Smart home | |
650 | 4 | |a Resource management | |
650 | 4 | |a Edge computing | |
700 | 1 | |a Garraghan, Peter |e verfasserin |4 aut | |
700 | 1 | |a Buyya, Rajkumar |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The journal of systems and software |d Amsterdam [u.a.] : Elsevier, 1979 |g 154, Seite 125-138 |h Online-Ressource |w (DE-627)316226858 |w (DE-600)1499749-6 |w (DE-576)081954395 |x 0164-1212 |7 nnns |
773 | 1 | 8 | |g volume:154 |g pages:125-138 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.52 |j Software engineering |
951 | |a AR | ||
952 | |d 154 |h 125-138 |
author_variant |
s s g ss ssg p g pg r b rb |
---|---|
matchkey_str |
article:01641212:2019----::otroealdlubsdnelgnrsucmngmnapoc |
hierarchy_sort_str |
2019 |
bklnumber |
54.52 |
publishDate |
2019 |
allfields |
10.1016/j.jss.2019.04.058 doi (DE-627)ELV002289342 (ELSEVIER)S0164-1212(19)30098-6 DE-627 ger DE-627 rda eng 004 DE-600 54.52 bkl Gill, Sukhpal Singh verfasserin (orcid)0000-0002-3913-0369 aut ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. Fog computing Cloud computing Internet of things Smart home Resource management Edge computing Garraghan, Peter verfasserin aut Buyya, Rajkumar verfasserin aut Enthalten in The journal of systems and software Amsterdam [u.a.] : Elsevier, 1979 154, Seite 125-138 Online-Ressource (DE-627)316226858 (DE-600)1499749-6 (DE-576)081954395 0164-1212 nnns volume:154 pages:125-138 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.52 Software engineering AR 154 125-138 |
spelling |
10.1016/j.jss.2019.04.058 doi (DE-627)ELV002289342 (ELSEVIER)S0164-1212(19)30098-6 DE-627 ger DE-627 rda eng 004 DE-600 54.52 bkl Gill, Sukhpal Singh verfasserin (orcid)0000-0002-3913-0369 aut ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. Fog computing Cloud computing Internet of things Smart home Resource management Edge computing Garraghan, Peter verfasserin aut Buyya, Rajkumar verfasserin aut Enthalten in The journal of systems and software Amsterdam [u.a.] : Elsevier, 1979 154, Seite 125-138 Online-Ressource (DE-627)316226858 (DE-600)1499749-6 (DE-576)081954395 0164-1212 nnns volume:154 pages:125-138 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.52 Software engineering AR 154 125-138 |
allfields_unstemmed |
10.1016/j.jss.2019.04.058 doi (DE-627)ELV002289342 (ELSEVIER)S0164-1212(19)30098-6 DE-627 ger DE-627 rda eng 004 DE-600 54.52 bkl Gill, Sukhpal Singh verfasserin (orcid)0000-0002-3913-0369 aut ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. Fog computing Cloud computing Internet of things Smart home Resource management Edge computing Garraghan, Peter verfasserin aut Buyya, Rajkumar verfasserin aut Enthalten in The journal of systems and software Amsterdam [u.a.] : Elsevier, 1979 154, Seite 125-138 Online-Ressource (DE-627)316226858 (DE-600)1499749-6 (DE-576)081954395 0164-1212 nnns volume:154 pages:125-138 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.52 Software engineering AR 154 125-138 |
allfieldsGer |
10.1016/j.jss.2019.04.058 doi (DE-627)ELV002289342 (ELSEVIER)S0164-1212(19)30098-6 DE-627 ger DE-627 rda eng 004 DE-600 54.52 bkl Gill, Sukhpal Singh verfasserin (orcid)0000-0002-3913-0369 aut ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. Fog computing Cloud computing Internet of things Smart home Resource management Edge computing Garraghan, Peter verfasserin aut Buyya, Rajkumar verfasserin aut Enthalten in The journal of systems and software Amsterdam [u.a.] : Elsevier, 1979 154, Seite 125-138 Online-Ressource (DE-627)316226858 (DE-600)1499749-6 (DE-576)081954395 0164-1212 nnns volume:154 pages:125-138 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.52 Software engineering AR 154 125-138 |
allfieldsSound |
10.1016/j.jss.2019.04.058 doi (DE-627)ELV002289342 (ELSEVIER)S0164-1212(19)30098-6 DE-627 ger DE-627 rda eng 004 DE-600 54.52 bkl Gill, Sukhpal Singh verfasserin (orcid)0000-0002-3913-0369 aut ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. Fog computing Cloud computing Internet of things Smart home Resource management Edge computing Garraghan, Peter verfasserin aut Buyya, Rajkumar verfasserin aut Enthalten in The journal of systems and software Amsterdam [u.a.] : Elsevier, 1979 154, Seite 125-138 Online-Ressource (DE-627)316226858 (DE-600)1499749-6 (DE-576)081954395 0164-1212 nnns volume:154 pages:125-138 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.52 Software engineering AR 154 125-138 |
language |
English |
source |
Enthalten in The journal of systems and software 154, Seite 125-138 volume:154 pages:125-138 |
sourceStr |
Enthalten in The journal of systems and software 154, Seite 125-138 volume:154 pages:125-138 |
format_phy_str_mv |
Article |
bklname |
Software engineering |
institution |
findex.gbv.de |
topic_facet |
Fog computing Cloud computing Internet of things Smart home Resource management Edge computing |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
The journal of systems and software |
authorswithroles_txt_mv |
Gill, Sukhpal Singh @@aut@@ Garraghan, Peter @@aut@@ Buyya, Rajkumar @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
316226858 |
dewey-sort |
14 |
id |
ELV002289342 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002289342</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132523.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jss.2019.04.058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002289342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0164-1212(19)30098-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gill, Sukhpal Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3913-0369</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fog computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart home</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resource management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge computing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garraghan, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buyya, Rajkumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of systems and software</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1979</subfield><subfield code="g">154, Seite 125-138</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)316226858</subfield><subfield code="w">(DE-600)1499749-6</subfield><subfield code="w">(DE-576)081954395</subfield><subfield code="x">0164-1212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:154</subfield><subfield code="g">pages:125-138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.52</subfield><subfield code="j">Software engineering</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">154</subfield><subfield code="h">125-138</subfield></datafield></record></collection>
|
author |
Gill, Sukhpal Singh |
spellingShingle |
Gill, Sukhpal Singh ddc 004 bkl 54.52 misc Fog computing misc Cloud computing misc Internet of things misc Smart home misc Resource management misc Edge computing ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices |
authorStr |
Gill, Sukhpal Singh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316226858 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0164-1212 |
topic_title |
004 DE-600 54.52 bkl ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices Fog computing Cloud computing Internet of things Smart home Resource management Edge computing |
topic |
ddc 004 bkl 54.52 misc Fog computing misc Cloud computing misc Internet of things misc Smart home misc Resource management misc Edge computing |
topic_unstemmed |
ddc 004 bkl 54.52 misc Fog computing misc Cloud computing misc Internet of things misc Smart home misc Resource management misc Edge computing |
topic_browse |
ddc 004 bkl 54.52 misc Fog computing misc Cloud computing misc Internet of things misc Smart home misc Resource management misc Edge computing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The journal of systems and software |
hierarchy_parent_id |
316226858 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
The journal of systems and software |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)316226858 (DE-600)1499749-6 (DE-576)081954395 |
title |
ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices |
ctrlnum |
(DE-627)ELV002289342 (ELSEVIER)S0164-1212(19)30098-6 |
title_full |
ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices |
author_sort |
Gill, Sukhpal Singh |
journal |
The journal of systems and software |
journalStr |
The journal of systems and software |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
125 |
author_browse |
Gill, Sukhpal Singh Garraghan, Peter Buyya, Rajkumar |
container_volume |
154 |
class |
004 DE-600 54.52 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gill, Sukhpal Singh |
doi_str_mv |
10.1016/j.jss.2019.04.058 |
normlink |
(ORCID)0000-0002-3913-0369 |
normlink_prefix_str_mv |
(orcid)0000-0002-3913-0369 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
router: fog enabled cloud based intelligent resource management approach for smart home iot devices |
title_auth |
ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices |
abstract |
There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. |
abstractGer |
There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. |
abstract_unstemmed |
There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices |
remote_bool |
true |
author2 |
Garraghan, Peter Buyya, Rajkumar |
author2Str |
Garraghan, Peter Buyya, Rajkumar |
ppnlink |
316226858 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jss.2019.04.058 |
up_date |
2024-07-07T00:14:09.723Z |
_version_ |
1803877088992690176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002289342</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132523.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jss.2019.04.058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002289342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0164-1212(19)30098-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gill, Sukhpal Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3913-0369</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fog computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart home</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resource management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge computing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garraghan, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buyya, Rajkumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of systems and software</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1979</subfield><subfield code="g">154, Seite 125-138</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)316226858</subfield><subfield code="w">(DE-600)1499749-6</subfield><subfield code="w">(DE-576)081954395</subfield><subfield code="x">0164-1212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:154</subfield><subfield code="g">pages:125-138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.52</subfield><subfield code="j">Software engineering</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">154</subfield><subfield code="h">125-138</subfield></datafield></record></collection>
|
score |
7.4011087 |