Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments
Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specifi...
Ausführliche Beschreibung
Autor*in: |
Bradbury, Harold J. [verfasserIn] Turchyn, Alexandra V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Earth and planetary science letters - Amsterdam [u.a.] : Elsevier, 1966, 519, Seite 40-49 |
---|---|
Übergeordnetes Werk: |
volume:519 ; pages:40-49 |
DOI / URN: |
10.1016/j.epsl.2019.04.044 |
---|
Katalog-ID: |
ELV002362759 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002362759 | ||
003 | DE-627 | ||
005 | 20231205154826.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.epsl.2019.04.044 |2 doi | |
035 | |a (DE-627)ELV002362759 | ||
035 | |a (ELSEVIER)S0012-821X(19)30248-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.35 |2 bkl | ||
084 | |a 39.29 |2 bkl | ||
100 | 1 | |a Bradbury, Harold J. |e verfasserin |0 (orcid)0000-0002-6937-9755 |4 aut | |
245 | 1 | 0 | |a Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. | ||
650 | 4 | |a authigenic carbonate | |
650 | 4 | |a machine learning | |
700 | 1 | |a Turchyn, Alexandra V. |e verfasserin |0 (orcid)0000-0002-9298-2173 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Earth and planetary science letters |d Amsterdam [u.a.] : Elsevier, 1966 |g 519, Seite 40-49 |h Online-Ressource |w (DE-627)266015778 |w (DE-600)1466659-5 |w (DE-576)074959980 |x 1385-013X |7 nnns |
773 | 1 | 8 | |g volume:519 |g pages:40-49 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.35 |j Endogene Geologie: Allgemeines |q VZ |
936 | b | k | |a 39.29 |j Theoretische Astronomie: Sonstiges |q VZ |
951 | |a AR | ||
952 | |d 519 |h 40-49 |
author_variant |
h j b hj hjb a v t av avt |
---|---|
matchkey_str |
article:1385013X:2019----::evlaighcrosndeoeietrcroaeomtoi |
hierarchy_sort_str |
2019 |
bklnumber |
38.35 39.29 |
publishDate |
2019 |
allfields |
10.1016/j.epsl.2019.04.044 doi (DE-627)ELV002362759 (ELSEVIER)S0012-821X(19)30248-1 DE-627 ger DE-627 rda eng 550 VZ 38.35 bkl 39.29 bkl Bradbury, Harold J. verfasserin (orcid)0000-0002-6937-9755 aut Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. authigenic carbonate machine learning Turchyn, Alexandra V. verfasserin (orcid)0000-0002-9298-2173 aut Enthalten in Earth and planetary science letters Amsterdam [u.a.] : Elsevier, 1966 519, Seite 40-49 Online-Ressource (DE-627)266015778 (DE-600)1466659-5 (DE-576)074959980 1385-013X nnns volume:519 pages:40-49 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.35 Endogene Geologie: Allgemeines VZ 39.29 Theoretische Astronomie: Sonstiges VZ AR 519 40-49 |
spelling |
10.1016/j.epsl.2019.04.044 doi (DE-627)ELV002362759 (ELSEVIER)S0012-821X(19)30248-1 DE-627 ger DE-627 rda eng 550 VZ 38.35 bkl 39.29 bkl Bradbury, Harold J. verfasserin (orcid)0000-0002-6937-9755 aut Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. authigenic carbonate machine learning Turchyn, Alexandra V. verfasserin (orcid)0000-0002-9298-2173 aut Enthalten in Earth and planetary science letters Amsterdam [u.a.] : Elsevier, 1966 519, Seite 40-49 Online-Ressource (DE-627)266015778 (DE-600)1466659-5 (DE-576)074959980 1385-013X nnns volume:519 pages:40-49 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.35 Endogene Geologie: Allgemeines VZ 39.29 Theoretische Astronomie: Sonstiges VZ AR 519 40-49 |
allfields_unstemmed |
10.1016/j.epsl.2019.04.044 doi (DE-627)ELV002362759 (ELSEVIER)S0012-821X(19)30248-1 DE-627 ger DE-627 rda eng 550 VZ 38.35 bkl 39.29 bkl Bradbury, Harold J. verfasserin (orcid)0000-0002-6937-9755 aut Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. authigenic carbonate machine learning Turchyn, Alexandra V. verfasserin (orcid)0000-0002-9298-2173 aut Enthalten in Earth and planetary science letters Amsterdam [u.a.] : Elsevier, 1966 519, Seite 40-49 Online-Ressource (DE-627)266015778 (DE-600)1466659-5 (DE-576)074959980 1385-013X nnns volume:519 pages:40-49 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.35 Endogene Geologie: Allgemeines VZ 39.29 Theoretische Astronomie: Sonstiges VZ AR 519 40-49 |
allfieldsGer |
10.1016/j.epsl.2019.04.044 doi (DE-627)ELV002362759 (ELSEVIER)S0012-821X(19)30248-1 DE-627 ger DE-627 rda eng 550 VZ 38.35 bkl 39.29 bkl Bradbury, Harold J. verfasserin (orcid)0000-0002-6937-9755 aut Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. authigenic carbonate machine learning Turchyn, Alexandra V. verfasserin (orcid)0000-0002-9298-2173 aut Enthalten in Earth and planetary science letters Amsterdam [u.a.] : Elsevier, 1966 519, Seite 40-49 Online-Ressource (DE-627)266015778 (DE-600)1466659-5 (DE-576)074959980 1385-013X nnns volume:519 pages:40-49 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.35 Endogene Geologie: Allgemeines VZ 39.29 Theoretische Astronomie: Sonstiges VZ AR 519 40-49 |
allfieldsSound |
10.1016/j.epsl.2019.04.044 doi (DE-627)ELV002362759 (ELSEVIER)S0012-821X(19)30248-1 DE-627 ger DE-627 rda eng 550 VZ 38.35 bkl 39.29 bkl Bradbury, Harold J. verfasserin (orcid)0000-0002-6937-9755 aut Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. authigenic carbonate machine learning Turchyn, Alexandra V. verfasserin (orcid)0000-0002-9298-2173 aut Enthalten in Earth and planetary science letters Amsterdam [u.a.] : Elsevier, 1966 519, Seite 40-49 Online-Ressource (DE-627)266015778 (DE-600)1466659-5 (DE-576)074959980 1385-013X nnns volume:519 pages:40-49 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.35 Endogene Geologie: Allgemeines VZ 39.29 Theoretische Astronomie: Sonstiges VZ AR 519 40-49 |
language |
English |
source |
Enthalten in Earth and planetary science letters 519, Seite 40-49 volume:519 pages:40-49 |
sourceStr |
Enthalten in Earth and planetary science letters 519, Seite 40-49 volume:519 pages:40-49 |
format_phy_str_mv |
Article |
bklname |
Endogene Geologie: Allgemeines Theoretische Astronomie: Sonstiges |
institution |
findex.gbv.de |
topic_facet |
authigenic carbonate machine learning |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Earth and planetary science letters |
authorswithroles_txt_mv |
Bradbury, Harold J. @@aut@@ Turchyn, Alexandra V. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
266015778 |
dewey-sort |
3550 |
id |
ELV002362759 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002362759</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.epsl.2019.04.044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002362759</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0012-821X(19)30248-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.29</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bradbury, Harold J.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6937-9755</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">authigenic carbonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Turchyn, Alexandra V.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9298-2173</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Earth and planetary science letters</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1966</subfield><subfield code="g">519, Seite 40-49</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015778</subfield><subfield code="w">(DE-600)1466659-5</subfield><subfield code="w">(DE-576)074959980</subfield><subfield code="x">1385-013X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:519</subfield><subfield code="g">pages:40-49</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.35</subfield><subfield code="j">Endogene Geologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.29</subfield><subfield code="j">Theoretische Astronomie: Sonstiges</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">519</subfield><subfield code="h">40-49</subfield></datafield></record></collection>
|
author |
Bradbury, Harold J. |
spellingShingle |
Bradbury, Harold J. ddc 550 bkl 38.35 bkl 39.29 misc authigenic carbonate misc machine learning Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments |
authorStr |
Bradbury, Harold J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266015778 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1385-013X |
topic_title |
550 VZ 38.35 bkl 39.29 bkl Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments authigenic carbonate machine learning |
topic |
ddc 550 bkl 38.35 bkl 39.29 misc authigenic carbonate misc machine learning |
topic_unstemmed |
ddc 550 bkl 38.35 bkl 39.29 misc authigenic carbonate misc machine learning |
topic_browse |
ddc 550 bkl 38.35 bkl 39.29 misc authigenic carbonate misc machine learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Earth and planetary science letters |
hierarchy_parent_id |
266015778 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Earth and planetary science letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266015778 (DE-600)1466659-5 (DE-576)074959980 |
title |
Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments |
ctrlnum |
(DE-627)ELV002362759 (ELSEVIER)S0012-821X(19)30248-1 |
title_full |
Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments |
author_sort |
Bradbury, Harold J. |
journal |
Earth and planetary science letters |
journalStr |
Earth and planetary science letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
40 |
author_browse |
Bradbury, Harold J. Turchyn, Alexandra V. |
container_volume |
519 |
class |
550 VZ 38.35 bkl 39.29 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bradbury, Harold J. |
doi_str_mv |
10.1016/j.epsl.2019.04.044 |
normlink |
(ORCID)0000-0002-6937-9755 (ORCID)0000-0002-9298-2173 |
normlink_prefix_str_mv |
(orcid)0000-0002-6937-9755 (orcid)0000-0002-9298-2173 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments |
title_auth |
Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments |
abstract |
Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. |
abstractGer |
Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. |
abstract_unstemmed |
Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments |
remote_bool |
true |
author2 |
Turchyn, Alexandra V. |
author2Str |
Turchyn, Alexandra V. |
ppnlink |
266015778 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.epsl.2019.04.044 |
up_date |
2024-07-07T00:28:50.837Z |
_version_ |
1803878012906635264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002362759</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.epsl.2019.04.044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002362759</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0012-821X(19)30248-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.29</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bradbury, Harold J.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6937-9755</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Previous attempts to quantify the amount of sedimentary carbonate precipitation in modern marine sediments have been derived from the flux of calcium into the sediments due to diffusion under assumed steady state, the application of Fick's first law, and then extrapolation of these site-specific rates to the global ocean sediment column. This approach is limited, however, as much of the ocean floor has not been sampled. We take a machine learning approach to update and refine the estimate of the amount of sedimentary carbonate precipitation, as well as define whether sedimentary carbonate precipitation is driven by organoclastic microbial sulfate reduction or anaerobic methane oxidation. We identify areas where there is sedimentary carbonate formation using machine learning, based upon oceanic physical and chemical properties including bathymetry, temperature, water depth, distance from shore, and tracers of primary production, and data from the global ODP/IODP database. Our results suggest that the total amount of sedimentary carbonate formation is much lower than previous estimates, at 1.35 ± 0.5 × 10 11 molC/yr. We suggest that this rate is a lower estimate and discuss why machine-learning approaches may always produce lower-bound estimates of global processes. Our calculations suggest that the formation of sedimentary carbonate today is mainly driven by anaerobic methane oxidation (77%), with the remainder attributed to organoclastic sulfate reduction. We use our machine-learning results to speculate the impact that sedimentary carbonate precipitation may have had on the carbon isotope composition of the surface dissolved inorganic carbon reservoir over Earth history.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">authigenic carbonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Turchyn, Alexandra V.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9298-2173</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Earth and planetary science letters</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1966</subfield><subfield code="g">519, Seite 40-49</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015778</subfield><subfield code="w">(DE-600)1466659-5</subfield><subfield code="w">(DE-576)074959980</subfield><subfield code="x">1385-013X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:519</subfield><subfield code="g">pages:40-49</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.35</subfield><subfield code="j">Endogene Geologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.29</subfield><subfield code="j">Theoretische Astronomie: Sonstiges</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">519</subfield><subfield code="h">40-49</subfield></datafield></record></collection>
|
score |
7.3998547 |