A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries
Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further...
Ausführliche Beschreibung
Autor*in: |
Huang, Zhe [verfasserIn] Zhu, Jie [verfasserIn] Qiu, Ruijun [verfasserIn] Ruan, Jujun [verfasserIn] Qiu, Rongliang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of cleaner production - Amsterdam [u.a.] : Elsevier Science, 1993, 229, Seite 1148-1157 |
---|---|
Übergeordnetes Werk: |
volume:229 ; pages:1148-1157 |
DOI / URN: |
10.1016/j.jclepro.2019.05.049 |
---|
Katalog-ID: |
ELV002431181 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002431181 | ||
003 | DE-627 | ||
005 | 20230524130639.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jclepro.2019.05.049 |2 doi | |
035 | |a (DE-627)ELV002431181 | ||
035 | |a (ELSEVIER)S0959-6526(19)31565-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |a 330 |q DE-600 |
084 | |a 43.35 |2 bkl | ||
084 | |a 85.35 |2 bkl | ||
100 | 1 | |a Huang, Zhe |e verfasserin |4 aut | |
245 | 1 | 0 | |a A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. | ||
650 | 4 | |a Spent lithium-ion battery (power banks) | |
650 | 4 | |a Cobalt and nickel separation | |
650 | 4 | |a Vacuum step-by-step reduction | |
650 | 4 | |a Heat transfer models | |
700 | 1 | |a Zhu, Jie |e verfasserin |4 aut | |
700 | 1 | |a Qiu, Ruijun |e verfasserin |4 aut | |
700 | 1 | |a Ruan, Jujun |e verfasserin |4 aut | |
700 | 1 | |a Qiu, Rongliang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of cleaner production |d Amsterdam [u.a.] : Elsevier Science, 1993 |g 229, Seite 1148-1157 |h Online-Ressource |w (DE-627)324655878 |w (DE-600)2029338-0 |w (DE-576)252613988 |x 0959-6526 |7 nnns |
773 | 1 | 8 | |g volume:229 |g pages:1148-1157 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 43.35 |j Umweltrichtlinien |j Umweltnormen |
936 | b | k | |a 85.35 |j Fertigung |
951 | |a AR | ||
952 | |d 229 |h 1148-1157 |
author_variant |
z h zh j z jz r q rq j r jr r q rq |
---|---|
matchkey_str |
article:09596526:2019----::cenrneegsvntcnlgovcusebserdcinorcvrncbladik |
hierarchy_sort_str |
2019 |
bklnumber |
43.35 85.35 |
publishDate |
2019 |
allfields |
10.1016/j.jclepro.2019.05.049 doi (DE-627)ELV002431181 (ELSEVIER)S0959-6526(19)31565-3 DE-627 ger DE-627 rda eng 690 330 DE-600 43.35 bkl 85.35 bkl Huang, Zhe verfasserin aut A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. Spent lithium-ion battery (power banks) Cobalt and nickel separation Vacuum step-by-step reduction Heat transfer models Zhu, Jie verfasserin aut Qiu, Ruijun verfasserin aut Ruan, Jujun verfasserin aut Qiu, Rongliang verfasserin aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 229, Seite 1148-1157 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:229 pages:1148-1157 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.35 Umweltrichtlinien Umweltnormen 85.35 Fertigung AR 229 1148-1157 |
spelling |
10.1016/j.jclepro.2019.05.049 doi (DE-627)ELV002431181 (ELSEVIER)S0959-6526(19)31565-3 DE-627 ger DE-627 rda eng 690 330 DE-600 43.35 bkl 85.35 bkl Huang, Zhe verfasserin aut A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. Spent lithium-ion battery (power banks) Cobalt and nickel separation Vacuum step-by-step reduction Heat transfer models Zhu, Jie verfasserin aut Qiu, Ruijun verfasserin aut Ruan, Jujun verfasserin aut Qiu, Rongliang verfasserin aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 229, Seite 1148-1157 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:229 pages:1148-1157 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.35 Umweltrichtlinien Umweltnormen 85.35 Fertigung AR 229 1148-1157 |
allfields_unstemmed |
10.1016/j.jclepro.2019.05.049 doi (DE-627)ELV002431181 (ELSEVIER)S0959-6526(19)31565-3 DE-627 ger DE-627 rda eng 690 330 DE-600 43.35 bkl 85.35 bkl Huang, Zhe verfasserin aut A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. Spent lithium-ion battery (power banks) Cobalt and nickel separation Vacuum step-by-step reduction Heat transfer models Zhu, Jie verfasserin aut Qiu, Ruijun verfasserin aut Ruan, Jujun verfasserin aut Qiu, Rongliang verfasserin aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 229, Seite 1148-1157 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:229 pages:1148-1157 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.35 Umweltrichtlinien Umweltnormen 85.35 Fertigung AR 229 1148-1157 |
allfieldsGer |
10.1016/j.jclepro.2019.05.049 doi (DE-627)ELV002431181 (ELSEVIER)S0959-6526(19)31565-3 DE-627 ger DE-627 rda eng 690 330 DE-600 43.35 bkl 85.35 bkl Huang, Zhe verfasserin aut A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. Spent lithium-ion battery (power banks) Cobalt and nickel separation Vacuum step-by-step reduction Heat transfer models Zhu, Jie verfasserin aut Qiu, Ruijun verfasserin aut Ruan, Jujun verfasserin aut Qiu, Rongliang verfasserin aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 229, Seite 1148-1157 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:229 pages:1148-1157 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.35 Umweltrichtlinien Umweltnormen 85.35 Fertigung AR 229 1148-1157 |
allfieldsSound |
10.1016/j.jclepro.2019.05.049 doi (DE-627)ELV002431181 (ELSEVIER)S0959-6526(19)31565-3 DE-627 ger DE-627 rda eng 690 330 DE-600 43.35 bkl 85.35 bkl Huang, Zhe verfasserin aut A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. Spent lithium-ion battery (power banks) Cobalt and nickel separation Vacuum step-by-step reduction Heat transfer models Zhu, Jie verfasserin aut Qiu, Ruijun verfasserin aut Ruan, Jujun verfasserin aut Qiu, Rongliang verfasserin aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 229, Seite 1148-1157 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:229 pages:1148-1157 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.35 Umweltrichtlinien Umweltnormen 85.35 Fertigung AR 229 1148-1157 |
language |
English |
source |
Enthalten in Journal of cleaner production 229, Seite 1148-1157 volume:229 pages:1148-1157 |
sourceStr |
Enthalten in Journal of cleaner production 229, Seite 1148-1157 volume:229 pages:1148-1157 |
format_phy_str_mv |
Article |
bklname |
Umweltrichtlinien Umweltnormen Fertigung |
institution |
findex.gbv.de |
topic_facet |
Spent lithium-ion battery (power banks) Cobalt and nickel separation Vacuum step-by-step reduction Heat transfer models |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Journal of cleaner production |
authorswithroles_txt_mv |
Huang, Zhe @@aut@@ Zhu, Jie @@aut@@ Qiu, Ruijun @@aut@@ Ruan, Jujun @@aut@@ Qiu, Rongliang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
324655878 |
dewey-sort |
3690 |
id |
ELV002431181 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002431181</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524130639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jclepro.2019.05.049</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002431181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0959-6526(19)31565-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">330</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spent lithium-ion battery (power banks)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cobalt and nickel separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum step-by-step reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Ruijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruan, Jujun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Rongliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of cleaner production</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1993</subfield><subfield code="g">229, Seite 1148-1157</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)324655878</subfield><subfield code="w">(DE-600)2029338-0</subfield><subfield code="w">(DE-576)252613988</subfield><subfield code="x">0959-6526</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229</subfield><subfield code="g">pages:1148-1157</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.35</subfield><subfield code="j">Umweltrichtlinien</subfield><subfield code="j">Umweltnormen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229</subfield><subfield code="h">1148-1157</subfield></datafield></record></collection>
|
author |
Huang, Zhe |
spellingShingle |
Huang, Zhe ddc 690 bkl 43.35 bkl 85.35 misc Spent lithium-ion battery (power banks) misc Cobalt and nickel separation misc Vacuum step-by-step reduction misc Heat transfer models A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries |
authorStr |
Huang, Zhe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)324655878 |
format |
electronic Article |
dewey-ones |
690 - Buildings 330 - Economics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0959-6526 |
topic_title |
690 330 DE-600 43.35 bkl 85.35 bkl A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries Spent lithium-ion battery (power banks) Cobalt and nickel separation Vacuum step-by-step reduction Heat transfer models |
topic |
ddc 690 bkl 43.35 bkl 85.35 misc Spent lithium-ion battery (power banks) misc Cobalt and nickel separation misc Vacuum step-by-step reduction misc Heat transfer models |
topic_unstemmed |
ddc 690 bkl 43.35 bkl 85.35 misc Spent lithium-ion battery (power banks) misc Cobalt and nickel separation misc Vacuum step-by-step reduction misc Heat transfer models |
topic_browse |
ddc 690 bkl 43.35 bkl 85.35 misc Spent lithium-ion battery (power banks) misc Cobalt and nickel separation misc Vacuum step-by-step reduction misc Heat transfer models |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of cleaner production |
hierarchy_parent_id |
324655878 |
dewey-tens |
690 - Building & construction 330 - Economics |
hierarchy_top_title |
Journal of cleaner production |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 |
title |
A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries |
ctrlnum |
(DE-627)ELV002431181 (ELSEVIER)S0959-6526(19)31565-3 |
title_full |
A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries |
author_sort |
Huang, Zhe |
journal |
Journal of cleaner production |
journalStr |
Journal of cleaner production |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
1148 |
author_browse |
Huang, Zhe Zhu, Jie Qiu, Ruijun Ruan, Jujun Qiu, Rongliang |
container_volume |
229 |
class |
690 330 DE-600 43.35 bkl 85.35 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, Zhe |
doi_str_mv |
10.1016/j.jclepro.2019.05.049 |
dewey-full |
690 330 |
author2-role |
verfasserin |
title_sort |
a cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries |
title_auth |
A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries |
abstract |
Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. |
abstractGer |
Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. |
abstract_unstemmed |
Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries |
remote_bool |
true |
author2 |
Zhu, Jie Qiu, Ruijun Ruan, Jujun Qiu, Rongliang |
author2Str |
Zhu, Jie Qiu, Ruijun Ruan, Jujun Qiu, Rongliang |
ppnlink |
324655878 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jclepro.2019.05.049 |
up_date |
2024-07-07T00:42:18.123Z |
_version_ |
1803878859407360000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002431181</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524130639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jclepro.2019.05.049</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002431181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0959-6526(19)31565-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">330</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Waste power banks (a kind of lithium-ion battery) are widely generated along with the growing widespread use of mobile phone. Vacuum carbon reduction is encouraged to recover cobalt and nickel from spent lithium-ion battery. However, the mixed nickel and cobalt particles are difficult to be further separated. Recovering cobalt and nickel respectively from the electrode powders is important to improve the recovery value of spent lithium-ion battery. According to the analysis of Gibbs free energy of the reduction process of Ni2+ and Co2+, we proposed a cleaner technology of step-by-step vacuum carbon reduction to recover nickel and cobalt in sequence from the electrode powder of spent lithium-ion batteries. The Ni2+ and Co2+ in the spent lithium-ion battery are reduced into nickel and cobalt in vacuum tubular furnace at the temperatures of 691 °C and 873 °C respectively. Nickel and cobalt can be separated in sequence by magnetic separation at the reduction products of different temperatures. Additionally, for energy saving and accurate reduction, we analyzed the heat transfer in the vacuum reduction process and constructed the models for computing the true temperature of electrode powder in crucible. The models are used to compute the accurate reduction temperatures for Co2+ and Ni2+. It will greatly reduce the energy cost in the reduction process which be attributed to sustainable development. The models also can guide the structure design of vacuum tubular furnace for improving the efficiency of heat transfer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spent lithium-ion battery (power banks)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cobalt and nickel separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum step-by-step reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Ruijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruan, Jujun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Rongliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of cleaner production</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1993</subfield><subfield code="g">229, Seite 1148-1157</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)324655878</subfield><subfield code="w">(DE-600)2029338-0</subfield><subfield code="w">(DE-576)252613988</subfield><subfield code="x">0959-6526</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229</subfield><subfield code="g">pages:1148-1157</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.35</subfield><subfield code="j">Umweltrichtlinien</subfield><subfield code="j">Umweltnormen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229</subfield><subfield code="h">1148-1157</subfield></datafield></record></collection>
|
score |
7.399579 |