Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution
Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper ta...
Ausführliche Beschreibung
Autor*in: |
Băncescu, Irina [verfasserIn] Chivu, Luminiţa [verfasserIn] Preda, Vasile [verfasserIn] Puente-Ajovín, Miguel [verfasserIn] Ramos, Arturo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Physica / A - Amsterdam : North Holland Publ. Co., 1975, 526 |
---|---|
Übergeordnetes Werk: |
volume:526 |
DOI / URN: |
10.1016/j.physa.2019.04.253 |
---|
Katalog-ID: |
ELV002470616 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002470616 | ||
003 | DE-627 | ||
005 | 20230524143652.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physa.2019.04.253 |2 doi | |
035 | |a (DE-627)ELV002470616 | ||
035 | |a (ELSEVIER)S0378-4371(19)30627-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DE-600 |
084 | |a 33.25 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Băncescu, Irina |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. | ||
650 | 4 | |a Mixture of log-normal models | |
650 | 4 | |a Pareto upper and lower tails | |
650 | 4 | |a GB2 distribution | |
650 | 4 | |a City-size distribution | |
700 | 1 | |a Chivu, Luminiţa |e verfasserin |4 aut | |
700 | 1 | |a Preda, Vasile |e verfasserin |4 aut | |
700 | 1 | |a Puente-Ajovín, Miguel |e verfasserin |4 aut | |
700 | 1 | |a Ramos, Arturo |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physica / A |d Amsterdam : North Holland Publ. Co., 1975 |g 526 |h Online-Ressource |w (DE-627)266015077 |w (DE-600)1466577-3 |w (DE-576)074959832 |x 1873-2119 |7 nnns |
773 | 1 | 8 | |g volume:526 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.25 |j Thermodynamik |j statistische Physik |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |
951 | |a AR | ||
952 | |d 526 |
author_variant |
i b ib l c lc v p vp m p a mpa a r ar |
---|---|
matchkey_str |
article:18732119:2019----::oprsnolgomlitradaeoalg2ronrabdormnaa |
hierarchy_sort_str |
2019 |
bklnumber |
33.25 31.00 |
publishDate |
2019 |
allfields |
10.1016/j.physa.2019.04.253 doi (DE-627)ELV002470616 (ELSEVIER)S0378-4371(19)30627-2 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Băncescu, Irina verfasserin aut Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. Mixture of log-normal models Pareto upper and lower tails GB2 distribution City-size distribution Chivu, Luminiţa verfasserin aut Preda, Vasile verfasserin aut Puente-Ajovín, Miguel verfasserin aut Ramos, Arturo verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 526 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:526 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 526 |
spelling |
10.1016/j.physa.2019.04.253 doi (DE-627)ELV002470616 (ELSEVIER)S0378-4371(19)30627-2 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Băncescu, Irina verfasserin aut Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. Mixture of log-normal models Pareto upper and lower tails GB2 distribution City-size distribution Chivu, Luminiţa verfasserin aut Preda, Vasile verfasserin aut Puente-Ajovín, Miguel verfasserin aut Ramos, Arturo verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 526 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:526 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 526 |
allfields_unstemmed |
10.1016/j.physa.2019.04.253 doi (DE-627)ELV002470616 (ELSEVIER)S0378-4371(19)30627-2 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Băncescu, Irina verfasserin aut Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. Mixture of log-normal models Pareto upper and lower tails GB2 distribution City-size distribution Chivu, Luminiţa verfasserin aut Preda, Vasile verfasserin aut Puente-Ajovín, Miguel verfasserin aut Ramos, Arturo verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 526 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:526 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 526 |
allfieldsGer |
10.1016/j.physa.2019.04.253 doi (DE-627)ELV002470616 (ELSEVIER)S0378-4371(19)30627-2 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Băncescu, Irina verfasserin aut Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. Mixture of log-normal models Pareto upper and lower tails GB2 distribution City-size distribution Chivu, Luminiţa verfasserin aut Preda, Vasile verfasserin aut Puente-Ajovín, Miguel verfasserin aut Ramos, Arturo verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 526 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:526 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 526 |
allfieldsSound |
10.1016/j.physa.2019.04.253 doi (DE-627)ELV002470616 (ELSEVIER)S0378-4371(19)30627-2 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Băncescu, Irina verfasserin aut Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. Mixture of log-normal models Pareto upper and lower tails GB2 distribution City-size distribution Chivu, Luminiţa verfasserin aut Preda, Vasile verfasserin aut Puente-Ajovín, Miguel verfasserin aut Ramos, Arturo verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 526 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:526 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 526 |
language |
English |
source |
Enthalten in Physica / A 526 volume:526 |
sourceStr |
Enthalten in Physica / A 526 volume:526 |
format_phy_str_mv |
Article |
bklname |
Thermodynamik statistische Physik Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Mixture of log-normal models Pareto upper and lower tails GB2 distribution City-size distribution |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Physica / A |
authorswithroles_txt_mv |
Băncescu, Irina @@aut@@ Chivu, Luminiţa @@aut@@ Preda, Vasile @@aut@@ Puente-Ajovín, Miguel @@aut@@ Ramos, Arturo @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
266015077 |
dewey-sort |
3500 |
id |
ELV002470616 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002470616</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physa.2019.04.253</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002470616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-4371(19)30627-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Băncescu, Irina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixture of log-normal models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pareto upper and lower tails</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GB2 distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">City-size distribution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chivu, Luminiţa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Preda, Vasile</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puente-Ajovín, Miguel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramos, Arturo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica / A</subfield><subfield code="d">Amsterdam : North Holland Publ. Co., 1975</subfield><subfield code="g">526</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015077</subfield><subfield code="w">(DE-600)1466577-3</subfield><subfield code="w">(DE-576)074959832</subfield><subfield code="x">1873-2119</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:526</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">526</subfield></datafield></record></collection>
|
author |
Băncescu, Irina |
spellingShingle |
Băncescu, Irina ddc 500 bkl 33.25 bkl 31.00 misc Mixture of log-normal models misc Pareto upper and lower tails misc GB2 distribution misc City-size distribution Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution |
authorStr |
Băncescu, Irina |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266015077 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2119 |
topic_title |
500 DE-600 33.25 bkl 31.00 bkl Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution Mixture of log-normal models Pareto upper and lower tails GB2 distribution City-size distribution |
topic |
ddc 500 bkl 33.25 bkl 31.00 misc Mixture of log-normal models misc Pareto upper and lower tails misc GB2 distribution misc City-size distribution |
topic_unstemmed |
ddc 500 bkl 33.25 bkl 31.00 misc Mixture of log-normal models misc Pareto upper and lower tails misc GB2 distribution misc City-size distribution |
topic_browse |
ddc 500 bkl 33.25 bkl 31.00 misc Mixture of log-normal models misc Pareto upper and lower tails misc GB2 distribution misc City-size distribution |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physica / A |
hierarchy_parent_id |
266015077 |
dewey-tens |
500 - Science |
hierarchy_top_title |
Physica / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 |
title |
Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution |
ctrlnum |
(DE-627)ELV002470616 (ELSEVIER)S0378-4371(19)30627-2 |
title_full |
Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution |
author_sort |
Băncescu, Irina |
journal |
Physica / A |
journalStr |
Physica / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Băncescu, Irina Chivu, Luminiţa Preda, Vasile Puente-Ajovín, Miguel Ramos, Arturo |
container_volume |
526 |
class |
500 DE-600 33.25 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Băncescu, Irina |
doi_str_mv |
10.1016/j.physa.2019.04.253 |
dewey-full |
500 |
author2-role |
verfasserin |
title_sort |
comparisons of log-normal mixture and pareto tails, gb2 or log-normal body of romania’s all cities size distribution |
title_auth |
Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution |
abstract |
Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. |
abstractGer |
Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. |
abstract_unstemmed |
Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution |
remote_bool |
true |
author2 |
Chivu, Luminiţa Preda, Vasile Puente-Ajovín, Miguel Ramos, Arturo |
author2Str |
Chivu, Luminiţa Preda, Vasile Puente-Ajovín, Miguel Ramos, Arturo |
ppnlink |
266015077 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.physa.2019.04.253 |
up_date |
2024-07-07T00:50:11.356Z |
_version_ |
1803879355629174784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002470616</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physa.2019.04.253</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002470616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-4371(19)30627-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Băncescu, Irina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modeling demographic data has been on the agenda of statisticians for many years. Some of the distributions used are Pareto, reverse Pareto, q -exponential and log-normal models. An approach to this problem is to consider three statistical models: one for the upper tail, one for the middle range, and another for the lower tail. This paper deals with the size distribution of urban and rural agglomerations in Romania for the 1992–2017 period, by comparing the recently introduced three log-normal mixture (3LN), Pareto tails log-normal (PTLN), and threshold double Pareto Generalized Beta of second kind (tdPGB2) models. The tdPGB2 statistical model has the PTLN distribution as a limiting case. The maximum likelihood estimates of the distributions are computed, and goodness-of-fit tests are performed using the Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling (AD) statistics. Also, we use the Vuong and Bayes factor log-likelihood tests. Using both graphical and formal statistical tests, our results rigorously confirm that the 3LN model is statistically equivalent to PTLN and tdPGB2 distributions, the preferred model being the PTLN probability law. Both the PTLN and tdPGB2 distributions have Pareto tails but the 3LN model does not. All the three models prove to be very well suited parameterizations of Romania’s city size data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixture of log-normal models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pareto upper and lower tails</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GB2 distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">City-size distribution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chivu, Luminiţa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Preda, Vasile</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puente-Ajovín, Miguel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramos, Arturo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica / A</subfield><subfield code="d">Amsterdam : North Holland Publ. Co., 1975</subfield><subfield code="g">526</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015077</subfield><subfield code="w">(DE-600)1466577-3</subfield><subfield code="w">(DE-576)074959832</subfield><subfield code="x">1873-2119</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:526</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">526</subfield></datafield></record></collection>
|
score |
7.401457 |