Modal decomposition of fluid–structure interaction with application to flag flapping
Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems...
Ausführliche Beschreibung
Autor*in: |
Goza, Andres [verfasserIn] Colonius, Tim [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of fluids and structures - Orlando, Fla. : Elsevier, 1993, 81, Seite 728-737 |
---|---|
Übergeordnetes Werk: |
volume:81 ; pages:728-737 |
DOI / URN: |
10.1016/j.jfluidstructs.2018.06.014 |
---|
Katalog-ID: |
ELV002534711 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002534711 | ||
003 | DE-627 | ||
005 | 20230524131512.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jfluidstructs.2018.06.014 |2 doi | |
035 | |a (DE-627)ELV002534711 | ||
035 | |a (ELSEVIER)S0889-9746(18)30101-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 50.33 |2 bkl | ||
100 | 1 | |a Goza, Andres |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modal decomposition of fluid–structure interaction with application to flag flapping |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. | ||
650 | 4 | |a Fluid–structure interaction | |
650 | 4 | |a Modal decomposition | |
650 | 4 | |a Proper orthogonal decomposition | |
650 | 4 | |a Dynamic mode decomposition | |
700 | 1 | |a Colonius, Tim |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of fluids and structures |d Orlando, Fla. : Elsevier, 1993 |g 81, Seite 728-737 |h Online-Ressource |w (DE-627)26732667X |w (DE-600)1469614-9 |w (DE-576)253763266 |x 1095-8622 |7 nnns |
773 | 1 | 8 | |g volume:81 |g pages:728-737 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.33 |j Technische Strömungsmechanik |
951 | |a AR | ||
952 | |d 81 |h 728-737 |
author_variant |
a g ag t c tc |
---|---|
matchkey_str |
article:10958622:2018----::oadcmoiinflisrcueneatowtapi |
hierarchy_sort_str |
2018 |
bklnumber |
50.33 |
publishDate |
2018 |
allfields |
10.1016/j.jfluidstructs.2018.06.014 doi (DE-627)ELV002534711 (ELSEVIER)S0889-9746(18)30101-4 DE-627 ger DE-627 rda eng 530 DE-600 50.33 bkl Goza, Andres verfasserin aut Modal decomposition of fluid–structure interaction with application to flag flapping 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. Fluid–structure interaction Modal decomposition Proper orthogonal decomposition Dynamic mode decomposition Colonius, Tim verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 81, Seite 728-737 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:81 pages:728-737 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik AR 81 728-737 |
spelling |
10.1016/j.jfluidstructs.2018.06.014 doi (DE-627)ELV002534711 (ELSEVIER)S0889-9746(18)30101-4 DE-627 ger DE-627 rda eng 530 DE-600 50.33 bkl Goza, Andres verfasserin aut Modal decomposition of fluid–structure interaction with application to flag flapping 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. Fluid–structure interaction Modal decomposition Proper orthogonal decomposition Dynamic mode decomposition Colonius, Tim verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 81, Seite 728-737 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:81 pages:728-737 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik AR 81 728-737 |
allfields_unstemmed |
10.1016/j.jfluidstructs.2018.06.014 doi (DE-627)ELV002534711 (ELSEVIER)S0889-9746(18)30101-4 DE-627 ger DE-627 rda eng 530 DE-600 50.33 bkl Goza, Andres verfasserin aut Modal decomposition of fluid–structure interaction with application to flag flapping 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. Fluid–structure interaction Modal decomposition Proper orthogonal decomposition Dynamic mode decomposition Colonius, Tim verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 81, Seite 728-737 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:81 pages:728-737 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik AR 81 728-737 |
allfieldsGer |
10.1016/j.jfluidstructs.2018.06.014 doi (DE-627)ELV002534711 (ELSEVIER)S0889-9746(18)30101-4 DE-627 ger DE-627 rda eng 530 DE-600 50.33 bkl Goza, Andres verfasserin aut Modal decomposition of fluid–structure interaction with application to flag flapping 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. Fluid–structure interaction Modal decomposition Proper orthogonal decomposition Dynamic mode decomposition Colonius, Tim verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 81, Seite 728-737 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:81 pages:728-737 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik AR 81 728-737 |
allfieldsSound |
10.1016/j.jfluidstructs.2018.06.014 doi (DE-627)ELV002534711 (ELSEVIER)S0889-9746(18)30101-4 DE-627 ger DE-627 rda eng 530 DE-600 50.33 bkl Goza, Andres verfasserin aut Modal decomposition of fluid–structure interaction with application to flag flapping 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. Fluid–structure interaction Modal decomposition Proper orthogonal decomposition Dynamic mode decomposition Colonius, Tim verfasserin aut Enthalten in Journal of fluids and structures Orlando, Fla. : Elsevier, 1993 81, Seite 728-737 Online-Ressource (DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 1095-8622 nnns volume:81 pages:728-737 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik AR 81 728-737 |
language |
English |
source |
Enthalten in Journal of fluids and structures 81, Seite 728-737 volume:81 pages:728-737 |
sourceStr |
Enthalten in Journal of fluids and structures 81, Seite 728-737 volume:81 pages:728-737 |
format_phy_str_mv |
Article |
bklname |
Technische Strömungsmechanik |
institution |
findex.gbv.de |
topic_facet |
Fluid–structure interaction Modal decomposition Proper orthogonal decomposition Dynamic mode decomposition |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of fluids and structures |
authorswithroles_txt_mv |
Goza, Andres @@aut@@ Colonius, Tim @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
26732667X |
dewey-sort |
3530 |
id |
ELV002534711 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002534711</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131512.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfluidstructs.2018.06.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002534711</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0889-9746(18)30101-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goza, Andres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modal decomposition of fluid–structure interaction with application to flag flapping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid–structure interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proper orthogonal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic mode decomposition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colonius, Tim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fluids and structures</subfield><subfield code="d">Orlando, Fla. : Elsevier, 1993</subfield><subfield code="g">81, Seite 728-737</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)26732667X</subfield><subfield code="w">(DE-600)1469614-9</subfield><subfield code="w">(DE-576)253763266</subfield><subfield code="x">1095-8622</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">pages:728-737</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="h">728-737</subfield></datafield></record></collection>
|
author |
Goza, Andres |
spellingShingle |
Goza, Andres ddc 530 bkl 50.33 misc Fluid–structure interaction misc Modal decomposition misc Proper orthogonal decomposition misc Dynamic mode decomposition Modal decomposition of fluid–structure interaction with application to flag flapping |
authorStr |
Goza, Andres |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)26732667X |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1095-8622 |
topic_title |
530 DE-600 50.33 bkl Modal decomposition of fluid–structure interaction with application to flag flapping Fluid–structure interaction Modal decomposition Proper orthogonal decomposition Dynamic mode decomposition |
topic |
ddc 530 bkl 50.33 misc Fluid–structure interaction misc Modal decomposition misc Proper orthogonal decomposition misc Dynamic mode decomposition |
topic_unstemmed |
ddc 530 bkl 50.33 misc Fluid–structure interaction misc Modal decomposition misc Proper orthogonal decomposition misc Dynamic mode decomposition |
topic_browse |
ddc 530 bkl 50.33 misc Fluid–structure interaction misc Modal decomposition misc Proper orthogonal decomposition misc Dynamic mode decomposition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of fluids and structures |
hierarchy_parent_id |
26732667X |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of fluids and structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)26732667X (DE-600)1469614-9 (DE-576)253763266 |
title |
Modal decomposition of fluid–structure interaction with application to flag flapping |
ctrlnum |
(DE-627)ELV002534711 (ELSEVIER)S0889-9746(18)30101-4 |
title_full |
Modal decomposition of fluid–structure interaction with application to flag flapping |
author_sort |
Goza, Andres |
journal |
Journal of fluids and structures |
journalStr |
Journal of fluids and structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
728 |
author_browse |
Goza, Andres Colonius, Tim |
container_volume |
81 |
class |
530 DE-600 50.33 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Goza, Andres |
doi_str_mv |
10.1016/j.jfluidstructs.2018.06.014 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
modal decomposition of fluid–structure interaction with application to flag flapping |
title_auth |
Modal decomposition of fluid–structure interaction with application to flag flapping |
abstract |
Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. |
abstractGer |
Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. |
abstract_unstemmed |
Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Modal decomposition of fluid–structure interaction with application to flag flapping |
remote_bool |
true |
author2 |
Colonius, Tim |
author2Str |
Colonius, Tim |
ppnlink |
26732667X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jfluidstructs.2018.06.014 |
up_date |
2024-07-06T16:35:44.801Z |
_version_ |
1803848247992647680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002534711</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131512.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfluidstructs.2018.06.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002534711</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0889-9746(18)30101-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goza, Andres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modal decomposition of fluid–structure interaction with application to flag flapping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid–structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell and Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid–structure interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proper orthogonal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic mode decomposition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colonius, Tim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fluids and structures</subfield><subfield code="d">Orlando, Fla. : Elsevier, 1993</subfield><subfield code="g">81, Seite 728-737</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)26732667X</subfield><subfield code="w">(DE-600)1469614-9</subfield><subfield code="w">(DE-576)253763266</subfield><subfield code="x">1095-8622</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">pages:728-737</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="h">728-737</subfield></datafield></record></collection>
|
score |
7.401906 |