Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions
Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a differen...
Ausführliche Beschreibung
Autor*in: |
Singh, Digvijay [verfasserIn] Das, Arup Kumar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers & fluids - Amsterdam [u.a.] : Elsevier Science, 1973, 170, Seite 1-12 |
---|---|
Übergeordnetes Werk: |
volume:170 ; pages:1-12 |
DOI / URN: |
10.1016/j.compfluid.2018.04.024 |
---|
Katalog-ID: |
ELV002569574 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002569574 | ||
003 | DE-627 | ||
005 | 20230524151132.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compfluid.2018.04.024 |2 doi | |
035 | |a (DE-627)ELV002569574 | ||
035 | |a (ELSEVIER)S0045-7930(18)30220-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 50.33 |2 bkl | ||
084 | |a 38.90 |2 bkl | ||
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Singh, Digvijay |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. | ||
650 | 4 | |a Hydraulic jump | |
650 | 4 | |a Asymmetry | |
650 | 4 | |a Wall jet | |
650 | 4 | |a Upwash | |
650 | 4 | |a Film | |
650 | 4 | |a Jump–jump interaction | |
700 | 1 | |a Das, Arup Kumar |e verfasserin |0 (orcid)0000-0002-2323-4745 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers & fluids |d Amsterdam [u.a.] : Elsevier Science, 1973 |g 170, Seite 1-12 |h Online-Ressource |w (DE-627)306654938 |w (DE-600)1499975-4 |w (DE-576)094531250 |7 nnns |
773 | 1 | 8 | |g volume:170 |g pages:1-12 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.33 |j Technische Strömungsmechanik |
936 | b | k | |a 38.90 |j Ozeanologie |j Ozeanographie |
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |
951 | |a AR | ||
952 | |d 170 |h 1-12 |
author_variant |
d s ds a k d ak akd |
---|---|
matchkey_str |
singhdigvijaydasarupkumar:2018----:opttoasmltoordalaymtihdalcupad |
hierarchy_sort_str |
2018 |
bklnumber |
50.33 38.90 38.85 |
publishDate |
2018 |
allfields |
10.1016/j.compfluid.2018.04.024 doi (DE-627)ELV002569574 (ELSEVIER)S0045-7930(18)30220-2 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Singh, Digvijay verfasserin aut Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. Hydraulic jump Asymmetry Wall jet Upwash Film Jump–jump interaction Das, Arup Kumar verfasserin (orcid)0000-0002-2323-4745 aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 170, Seite 1-12 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:170 pages:1-12 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 170 1-12 |
spelling |
10.1016/j.compfluid.2018.04.024 doi (DE-627)ELV002569574 (ELSEVIER)S0045-7930(18)30220-2 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Singh, Digvijay verfasserin aut Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. Hydraulic jump Asymmetry Wall jet Upwash Film Jump–jump interaction Das, Arup Kumar verfasserin (orcid)0000-0002-2323-4745 aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 170, Seite 1-12 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:170 pages:1-12 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 170 1-12 |
allfields_unstemmed |
10.1016/j.compfluid.2018.04.024 doi (DE-627)ELV002569574 (ELSEVIER)S0045-7930(18)30220-2 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Singh, Digvijay verfasserin aut Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. Hydraulic jump Asymmetry Wall jet Upwash Film Jump–jump interaction Das, Arup Kumar verfasserin (orcid)0000-0002-2323-4745 aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 170, Seite 1-12 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:170 pages:1-12 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 170 1-12 |
allfieldsGer |
10.1016/j.compfluid.2018.04.024 doi (DE-627)ELV002569574 (ELSEVIER)S0045-7930(18)30220-2 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Singh, Digvijay verfasserin aut Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. Hydraulic jump Asymmetry Wall jet Upwash Film Jump–jump interaction Das, Arup Kumar verfasserin (orcid)0000-0002-2323-4745 aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 170, Seite 1-12 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:170 pages:1-12 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 170 1-12 |
allfieldsSound |
10.1016/j.compfluid.2018.04.024 doi (DE-627)ELV002569574 (ELSEVIER)S0045-7930(18)30220-2 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Singh, Digvijay verfasserin aut Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. Hydraulic jump Asymmetry Wall jet Upwash Film Jump–jump interaction Das, Arup Kumar verfasserin (orcid)0000-0002-2323-4745 aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 170, Seite 1-12 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:170 pages:1-12 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 170 1-12 |
language |
English |
source |
Enthalten in Computers & fluids 170, Seite 1-12 volume:170 pages:1-12 |
sourceStr |
Enthalten in Computers & fluids 170, Seite 1-12 volume:170 pages:1-12 |
format_phy_str_mv |
Article |
bklname |
Technische Strömungsmechanik Ozeanologie Ozeanographie Hydrologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Hydraulic jump Asymmetry Wall jet Upwash Film Jump–jump interaction |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computers & fluids |
authorswithroles_txt_mv |
Singh, Digvijay @@aut@@ Das, Arup Kumar @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
306654938 |
dewey-sort |
14 |
id |
ELV002569574 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002569574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compfluid.2018.04.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002569574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7930(18)30220-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Digvijay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic jump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wall jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upwash</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jump–jump interaction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, Arup Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2323-4745</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & fluids</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">170, Seite 1-12</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306654938</subfield><subfield code="w">(DE-600)1499975-4</subfield><subfield code="w">(DE-576)094531250</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield><subfield code="g">pages:1-12</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90</subfield><subfield code="j">Ozeanologie</subfield><subfield code="j">Ozeanographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield><subfield code="h">1-12</subfield></datafield></record></collection>
|
author |
Singh, Digvijay |
spellingShingle |
Singh, Digvijay ddc 004 bkl 50.33 bkl 38.90 bkl 38.85 misc Hydraulic jump misc Asymmetry misc Wall jet misc Upwash misc Film misc Jump–jump interaction Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions |
authorStr |
Singh, Digvijay |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306654938 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions Hydraulic jump Asymmetry Wall jet Upwash Film Jump–jump interaction |
topic |
ddc 004 bkl 50.33 bkl 38.90 bkl 38.85 misc Hydraulic jump misc Asymmetry misc Wall jet misc Upwash misc Film misc Jump–jump interaction |
topic_unstemmed |
ddc 004 bkl 50.33 bkl 38.90 bkl 38.85 misc Hydraulic jump misc Asymmetry misc Wall jet misc Upwash misc Film misc Jump–jump interaction |
topic_browse |
ddc 004 bkl 50.33 bkl 38.90 bkl 38.85 misc Hydraulic jump misc Asymmetry misc Wall jet misc Upwash misc Film misc Jump–jump interaction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers & fluids |
hierarchy_parent_id |
306654938 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers & fluids |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 |
title |
Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions |
ctrlnum |
(DE-627)ELV002569574 (ELSEVIER)S0045-7930(18)30220-2 |
title_full |
Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions |
author_sort |
Singh, Digvijay |
journal |
Computers & fluids |
journalStr |
Computers & fluids |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Singh, Digvijay Das, Arup Kumar |
container_volume |
170 |
class |
004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Singh, Digvijay |
doi_str_mv |
10.1016/j.compfluid.2018.04.024 |
normlink |
(ORCID)0000-0002-2323-4745 |
normlink_prefix_str_mv |
(orcid)0000-0002-2323-4745 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions |
title_auth |
Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions |
abstract |
Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. |
abstractGer |
Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. |
abstract_unstemmed |
Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions |
remote_bool |
true |
author2 |
Das, Arup Kumar |
author2Str |
Das, Arup Kumar |
ppnlink |
306654938 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compfluid.2018.04.024 |
up_date |
2024-07-06T16:42:42.081Z |
_version_ |
1803848685538246656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002569574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compfluid.2018.04.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002569574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7930(18)30220-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Digvijay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Circular hydraulic jump (CHJ) and its deviation from the azimuthal symmetry due to non-orthogonal impingement of liquid jet on a solid surface are studied using finite volume based numerical framework. Asymmetric interfacial jump has been modelled from volume of fluid (VOF) prediction for a different angle of inclination of a jet from normal of the surface. The extent of asymmetry is found to be increasing as the jet becomes more and more horizontal, deviation from orthogonal impingement. To understand the role of wall adhered jet on jump, flow physics has been studied which reveals back flow in the jump region causing circulation. Moreover, equipotential and heterogeneous jump–jump interactions are studied to predict fluidic features like fountain formation and upwash. Numerical simulations reveal that strength of interacting wall jets play a major role in the formation of a pattern as consequence of neighbouring twin jet impingement. A vertical flat liquid protrusion is observed at equidistant stagnation line from the impingement points of equipotential jets. On the other hand, a curvilinear upwash film has been found out as characteristics of the interaction between heterogeneous strengths of interacting jets. At a higher ratio of jet strengths, complete engulfment of a smaller hydraulic jump as an eye of larger one has been obtained from careful numerical simulation. Physical insights of these rich fluidic phenomena are described using well-resolved velocity vectors in the wall jet and upwash.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic jump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wall jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upwash</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jump–jump interaction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, Arup Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2323-4745</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & fluids</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">170, Seite 1-12</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306654938</subfield><subfield code="w">(DE-600)1499975-4</subfield><subfield code="w">(DE-576)094531250</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield><subfield code="g">pages:1-12</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90</subfield><subfield code="j">Ozeanologie</subfield><subfield code="j">Ozeanographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield><subfield code="h">1-12</subfield></datafield></record></collection>
|
score |
7.400817 |